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Abstract001

We introduce LingGen, a novel approach for002
controlled text generation that offers precise003
control over a wide array of linguistic at-004
tributes, even as the number of attributes varies.005
LingGen employs a dynamic P-MASKING006
strategy, which samples masking rates from a007
power law distribution during training. This in-008
novative approach enables the model to develop009
robust representations and adapt its attribute010
control capabilities across a variable number011
of attributes, from a single attribute to multi-012
ple complex configurations. The P-MASKING013
technique enhances LingGen’s ability to man-014
age different levels of attribute visibility, result-015
ing in superior performance in multi-attribute016
generation tasks. Our experiments demonstrate017
that LingGen surpasses current state-of-the-art018
models in both attribute control accuracy and019
text fluency, particularly excelling in scenarios020
with varying attribute demands. Additionally,021
our ablation studies highlight the effectiveness022
of P-MASKING and the influence of different023
base language models on performance. These024
findings demonstrate LingGen’s potential for025
applications requiring precise and adaptable026
control over multiple linguistic attributes in text027
generation.028

1 Introduction029

The demand for controlled text generation (CTG)030

has surged across various domains, including con-031

tent creation, personalized communication, and au-032

tomated writing. This task involves generating text033

that adheres to specific constraints, which is cru-034

cial for meeting diverse user requirements (Prab-035

humoye et al., 2020). However, achieving fine-036

grained control over linguistic features remains a037

significant challenge (Liu et al., 2023a).038

Existing CTG methods have shown promise in039

controlling high-level attributes like sentiment or040

topic, but they often struggle with finer-grained lin-041

guistic features. Traditional models tend to suffer042

from inefficiencies and quality degradation when 043

handling multiple controls, especially with com- 044

plex linguistic attributes (Li et al., 2018; Liu et al., 045

2023a). 046

Recent advancements in language model pre- 047

training have highlighted the complementary role 048

of denoising objectives alongside traditional causal 049

language modeling (CLM) (Raffel et al., 2020; Tay 050

et al.; Zeng et al.). Denoising objectives, often re- 051

ferred to as infilling tasks, enable models to learn 052

to "fill in the blanks" within a sequence, thereby en- 053

hancing their ability to handle tasks requiring bidi- 054

rectional context, such as infilling and long-range 055

dependency modeling (Wettig et al., 2023; Clark 056

et al., 2020). This mixture of denoising and CLM 057

has been shown to improve model robustness and 058

sample efficiency, particularly in scenarios where 059

both prefix and suffix contexts are available (Brown 060

et al., 2020; Hoffmann et al., 2022). 061

In this paper, we introduce LingGen, a novel 062

approach for CTG that leverages a dynamic mask- 063

ing strategy inspired by denoising objectives. Our 064

method, P-MASKING, samples masking rates 065

from a power law distribution, allowing the model 066

to learn robust representations and generalize its 067

attribute control capabilities to a variable number 068

of attributes (from 1 to k). This approach addresses 069

the limitations of existing techniques by incorporat- 070

ing the strengths of denoising objectives, enabling 071

improved performance in multi-attribute generation 072

tasks. 073

Our contributions are as follows: (1) We propose 074

a novel P-MASKING strategy that enhances the 075

flexibility and effectiveness of CTG models by en- 076

abling control over a variable number of attributes. 077

(2) We demonstrate the superior performance of 078

LingGen in multi-attribute generation tasks com- 079

pared to state-of-the-art baselines, particularly ex- 080

celling in scenarios with varying attribute demands. 081

(3) We provide insights into the impact of different 082

base language models on performance. The rest 083
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of the paper is organized as follows: Section 2 dis-084

cusses the background and related work, Section085

3 details our methodology, and Section 4 presents086

our experimental results.087

2 Background088

Controlled text generation has increasingly focused089

on methods to regulate multiple attributes simul-090

taneously, such as sentiment, tense, formality, or091

specific keywords (Shen et al., 2017). However,092

traditional models often lack the flexibility to adapt093

to new configurations, leading to inefficiencies and094

quality degradation when handling multiple con-095

trols, especially with finer-grained linguistic at-096

tributes (Li et al., 2018; Liu et al., 2023a).097

2.1 Compositional Text Control098

Recent advancements have explored compositional099

text control in latent space by leveraging compact,100

differentiable representations. Techniques based101

on ordinary differential equations (ODEs) and la-102

tent space samplers have shown promise in effi-103

ciently composing multiple control operations, sig-104

nificantly reducing computational overhead and105

maintaining high text quality (Liu et al., 2023a;106

Ding et al., 2023). These methods align with the107

growing interest in developing models that adapt to108

dynamic and flexible control inputs across various109

domains without the need for extensive retraining110

or costly optimizations (Yang et al., 2023).111

2.2 Denoising Objectives112

In parallel, research into Masked Language Mod-113

els (MLMs) has also highlighted the importance of114

masking strategies to improve model efficiency and115

performance (Devlin et al., 2019). Conventional116

wisdom in MLM training has prescribed masking117

15% of tokens (Devlin et al., 2019), but recent118

work challenges this approach, showing that higher119

masking rates—up to 40% or even 80%—can en-120

hance performance in certain scenarios without121

sacrificing representational quality (Wettig et al.,122

2023).123

Building on these findings, we propose P-124

MASKING, a novel masking strategy that sam-125

ples the masking rate from a power law distribu-126

tion (Clauset et al., 2009). This approach leverages127

the flexibility of variable masking rates, allowing128

the model to better handle a diverse and dynamic129

set of attribute controls, ranging from 1 to k at-130

tributes. By incorporating a power law distribution,131

P-MASKING addresses limitations found in fixed- 132

rate masking strategies, enabling improved control 133

over multi-attribute text generation (Clark et al., 134

2020). The power law distribution favors lower 135

masking rates, which introduces less noise and 136

helps the model learn more effectively in typical 137

cases (Newman, 2005). However, the model also 138

learns to handle edge cases with higher masking 139

rates, ensuring robust performance across varying 140

levels of attribute visibility (Wettig et al., 2023). 141

Our method extends principles from prior work, 142

such as PMI-Masking (Levine et al., 2021), which 143

aimed to move beyond uniform masking strategies, 144

and infilling objectives like those explored in UL2 145

and GLM-130B (Tay et al.; Zeng et al.; Levine 146

et al., 2021). With P-MASKING, we introduce a 147

principled approach that allows for a smoother and 148

more effective composition of multiple attributes, 149

ensuring better alignment between the generated 150

text and the desired attribute configurations. 151

2.3 Controlled Text Generation 152

Controlled Text Generation has become a vital tool 153

in NLP, enabling the creation of text tailored to 154

specific requirements. Works like Shi et al. (2024) 155

introduced fine-grained control codes (LiFi) for 156

sentiment manipulation, while Liu et al. (2023b) 157

proposed BOLT, enabling tunable biases for fac- 158

tual consistency. Pei et al. (2023) further explored 159

prefix-adaptive decoding for controlling text style. 160

However, these methods primarily focus on high- 161

level properties like sentiment, factual accuracy, or 162

style in general. 163

The integration of denoising objectives in pre- 164

training, as seen in models like UL2 and GLM, has 165

demonstrated the potential for enhancing model ca- 166

pabilities in handling diverse linguistic tasks (Tay 167

et al.; Zeng et al.). These objectives complement 168

traditional CLM by providing models with the abil- 169

ity to process and generate text with both prefix and 170

suffix contexts, a feature particularly beneficial for 171

applications such as code generation and document 172

completion (Chowdhery et al., 2023; Roberts et al., 173

2023). 174

Our work focuses on fine-grained control over 175

multiple linguistic attributes, building on the in- 176

sights from denoising objectives to enhance the 177

flexibility and effectiveness of CTG models. 178
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Figure 1: Overview of the LingGen architecture for controlled text generation. 1) Masking Rate Sampler: During
training, masking rates (ρmask) are sampled from a truncated Pareto distribution, balancing attribute visibility. This
dynamic masking ensures robust learning by varying the number of attributes visible to the model. 2) Feature
Encoder: The linguistic attributes (L1, . . . , LK ) are encoded into embeddings (E1, . . . , EK ) using a linear layer that
maps R1 to Rd, where d is the transformer hidden size. These embeddings are combined with token type embeddings
(T1, . . . , TK) to generate a global feature representation that feeds into the generative model. 3) Language Model:
The Transformer Decoder generates text tokens (ŷ1, . . . , ŷn) conditioned on the encoded attributes. The special start
token (< s >) combines with the global feature representation to guide generation, enabling fine-grained control
over multiple linguistic attributes.

3 Linguistic Generation with LingGen179

Given a set of desired linguistic attributes, aaa =180

{L1, ..., Lk}, where each Li represents a specific181

linguistic feature (e.g., sentence length, presence of182

keywords, number of unique sophisticated words),183

the task is to generate text that exhibits those at-184

tributes. We use 40 attributes, with the specific185

indices used described in Section A. Let Y be the186

space of possible generated texts. Our goal is to187

find a model G that takes the desired attributes aaa as188

input and generates a text yyy = G(aaa) that minimizes189

a loss function L(V (yyy), aaa), where V : Y → Rk is190

a function that extracts a fixed-size vector represen-191

tation of the attributes present in a given text (Hu192

et al., 2017). This can be expressed as finding193

yyy = argminyyy∈Y L(V (y), aaa). Note that there can194

be multiple solutions yyy that minimize this loss. For195

example, if aaa specifies a sentence of length 10,196

there are many possible sentences of length 10 that197

could be generated. However, as the number of at-198

tributes in aaa increases and the granularity of these199

attributes becomes finer (e.g., specifying not just200

sentence length but also specific keywords, syn- 201

tactic structure, and sentiment), the set of possible 202

solutions shrinks. In the extreme case, with a suf- 203

ficiently large and specific set of attributes, there 204

may be only one or a very small number of sen- 205

tences yyy that satisfy all the constraints (Holtzman 206

et al., 2020). 207

Instead of using reinforcement learning, which 208

has drawbacks like lower effectiveness compared 209

to supervised learning and reliance on a potentially 210

difficult-to-train attribute discriminator V , we train 211

the model using cross-entropy loss on the predicted 212

token sequence, conditioned on the input attributes. 213

Cross-entropy loss is particularly useful because it 214

aligns with the model’s training objective of pre- 215

dicting the next word in a sequence, thus reducing 216

the discrepancy between training and test condi- 217

tions. This helps mitigate the accumulation of 218

errors during sequence generation, as the model 219

learns to generate text that is both fluent and coher- 220

ent while conforming to the desired attributes (Ran- 221

zato et al., 2016; Bengio et al., 2000). Training on 222
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a large and diverse dataset with a wide variety of223

attribute combinations allows the model to learn224

the underlying relationship between attributes and225

text, enabling it to generate text that is both flu-226

ent and coherent while conforming to the desired227

attributes (Radford et al., 2019). The attribute val-228

ues themselves are derived using linguistic analysis229

tools (Lu, 2020, 2012; Lee and Lee, 2023). These230

tools provide the function V (yyy) that maps gener-231

ated text yyy to a vector of attribute values in Rk.232

LingGen consists of three main components:233

a Masking Rate Sampler, a Feature Encoder,234

and a Language Model (illustrated in Figure 1).235

These components work together to apply the P-236

MASKING mechanism and integrate attributes into237

the language model, allowing for flexible control238

over a variable number of attributes.239

3.1 Attribute Integration240

The k linguistic attributes aaa = {L1, ..., Lk} are en-241

coded into a hidden representation, which is then242

added element-wise to the embedding of a special243

Start-Of-Sequence (SOS) token. This injection of244

attribute information at the beginning of the gener-245

ation process provides a strong signal to the model246

about the desired text characteristics. We chose247

to use the OPT-350M (Zhang et al., 2022) model248

as the base model for our experiments due to its249

balance of strong performance and computational250

efficiency. We also experimented with GPT-2 (Rad-251

ford et al., 2019) and Pythia-410M (Biderman et al.,252

2023) to assess the impact of model size on perfor-253

mance.254

The Feature Encoder integrates linguistic at-255

tributes into the model’s latent space. Each lin-256

guistic attribute (Li) is transformed into an em-257

bedding (Ei) using a linear layer that maps R1 to258

Rd, where d is the transformer hidden size. These259

embeddings are combined with token type embed-260

dings (T1, . . . , TK) to generate a global feature261

vector, encapsulating the overall attribute infor-262

mation, which is passed to the Language Model.263

The feature encoder utilizes a novel strategy, P-264

MASKING, where masking rates (ρmask) are sam-265

pled from a truncated Pareto distribution. This266

balances attribute visibility during training, allow-267

ing the model to handle varying levels of visibility268

and generalize across attributes.269

The Language Model , a Transformer Decoder,270

generates text tokens (ŷ1, . . . , ŷn) conditioned on271

the input embeddings and the global attribute fea- 272

ture vector. The global feature vector, along with a 273

special start token (< s >), is fed into the decoder, 274

enabling precise control over linguistic attributes. 275

The decoder attends to both attribute representa- 276

tions and input context, ensuring alignment with 277

desired attribute configurations. 278

3.2 P-MASKING: A Dynamic Masking 279

Strategy 280

During training, we employ P-MASKING, a dy- 281

namic masking strategy. Masking attributes pre- 282

vents memorization of training data and mitigates 283

spurious correlations. By randomly masking some 284

attributes, the model learns to infer missing infor- 285

mation, leading to more robust control and disen- 286

tangled attribute representations. 287

P-MASKING samples masking rates from 288

a truncated Pareto distribution (Burroughs and 289

Tebbens, 2001), enabling the model to learn robust 290

representations and generalize its attribute control 291

capabilities to a wider range of attribute visibil- 292

ity levels. For each sample, a masking rate m is 293

sampled, controlling the proportion of attributes 294

masked. This allows the model to learn to con- 295

trol any number of attributes. The probability of 296

masking m percent of the attributes is given by: 297

P (ρmask = m) =
b

1− 2−b

1

mb+1
− 1 (1) 298

for 0 ≤ m ≤ 1, where b is a shape parameter. 299

In our experiments, b is tuned such that the dis- 300

tribution yields a masking rate of 30% or lower 301

in over 60% of samples. The sampled masking 302

rate m determines how many attributes are masked. 303

Masked attributes are replaced with a zero vector 304

and excluded from the self-attention (Vaswani et al., 305

2017). 306

Advantages over Fixed-Rate Masking: This 307

dynamic strategy offers several advantages. It in- 308

troduces more randomness during training, forc- 309

ing robust and generalizable representations. The 310

power law distribution allows a nuanced approach: 311

frequent lower masking rates preserve the learn- 312

ing of accurate attribute representations, while less 313

frequent higher rates force the model to handle 314

missing attributes, crucial for multi-attribute con- 315

trol. 316

4 Experiments 317

We evaluate LingGen by comparing it against sev- 318

eral state-of-the-art CTG baselines. All baselines 319
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Method MSE (↓) Fluency (↑) Time per token (ms) (↓)

No Control
Reference 0.00 72.7 - -
Vanilla LLM (Zhang et al., 2022) 2.03 57.6 25 (1×)

Decoding-time Control
PPLM (Dathathri et al., 2020) 5.99 67.7 1515 (61×)
Fudge (Yang and Klein, 2021) 3.24 65.1 112 (5×)
COLD (Qin et al., 2022) 3.99 49.1 3846 (155×)
BOLT (Liu et al., 2023b) 2.59 88.9 114 (5×)
LLama3.1 (Dubey et al., 2024) 2.27 94.5 162 (7×)
Mix&Match (Mireshghallah et al., 2022) 1.58 42.5 5882 (237×)

Fine-tuned LLM
MCTune (LLama-7B) (Nguyen et al., 2024) 2.51 97.3 68 (3×)
MCTune (OPT-350M) (Nguyen et al., 2024) 9.90 76.3 46 (2×)
LingGen (P-MASKING) 0.90 83.6 25 (1×)

Table 1: Comparison of model performance across different methods. The table presents the MSE, fluency scores,
and time per token for each model. Lower MSE and time per token values indicate better performance, while higher
fluency scores are preferred.

(except Llama 3.1) are re-implemented using OPT-320

350M as a base-model. We consider the following321

baselines:322

5 Experimental Setup323

We train LingGen using LoRA with r = 64,324

alpha = 128, a batch size of 140, using AdamW325

optimizer, for 3 epochs. We select the model from326

the best validation step. We use a max length of327

100 tokens, and train on a single A100 GPU.328

Next, we re-train MCTune on opt-350m for the329

same number of tokens and epochs as LingGen.330

Because MCTune requires In-Context Fine-Tuning331

(ICFT) with a long prompt, and a context up to332

1024 tokens, it takes 216 GPU hours to train, while333

LingGen takes 18 GPU hours only. Subsequently,334

MCTune was trained on an HPC using 12 GPUs.335

We tune the hyper-parameters of all baselines using336

grid search.337

5.1 Baselines338

Vanilla LLM Generation (Zhang et al., 2022):339

This baseline generates text by randomly sampling340

from the probability distribution of the language341

model, without any conditioning on the desired342

attributes. This serves as a basic sanity check to343

ensure that our model is indeed learning to control344

for the attributes.345

Reference: This baseline uses the reference sen-346

tence as the generated text. This baseline provides347

an upper bound on the performance, as it assumes 348

that the model can perfectly reproduce the refer- 349

ence text. 350

Mix&Match (Mireshghallah et al., 2022): 351

This baseline interprets controllable generation as 352

sampling from an energy-based model whose en- 353

ergy values are derived from the scores of a masked 354

language model (MLM) filling a mask token and 355

an attribute discriminator. 356

PPLM (Dathathri et al., 2020): This baseline 357

guides text generation by combining a pre-trained 358

language model with attribute classifiers, allow- 359

ing control over attributes without retraining the 360

language model. 361

Fudge (Yang and Klein, 2021): This base- 362

line adjusts the language model’s probabilities by 363

adding the likelihood of an attribute discriminator 364

to the language model likelihood. 365

LLama3.1 (70B) Chat Model (Dubey et al., 366

2024): This baseline employs the LLama3.1 (70B) 367

chat model, which has been instruction-tuned to 368

follow instructions and complete tasks. We use this 369

as a representative of large language models that 370

have been trained on a massive dataset of text and 371

code. 372

BOLT (Liu et al., 2023b): This baseline utilizes 373

tunable biases to directly modify the output logits 374

of the language model. 375

COLD Decoding (Qin et al., 2022): This base- 376

line frames constrained generation as an energy 377
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Figure 2: Model Performance by number of attributes controlled. The graph shows the MSE for different models
as the number of controlled attributes increases. LingGen (P-Masking) consistently achieves the lowest MSE,
indicating effective multi-attribute control.

minimization problem and uses gradient-based378

sampling to generate text that adheres to the given379

constraints.380

MCTune (LLama2-7B) (Nguyen et al., 2024):381

This baseline leverages the MCTune method,382

which incorporates multiple linguistic complexity383

values as controls during instruction tuning to con-384

trol the complexity of the generated text.385

MCTune (OPT-350M) (Nguyen et al., 2024):386

This baseline adapts the MCTune method to the387

OPT-350M model, enabling control over multiple388

linguistic complexities in the generated text.389

Decoding-time algorithms leverage a linguistic390

discriminator (LD) to estimate the linguistic at-391

tributes of generated text. This component is in-392

dependently pre-trained and frozen, allowing for393

differentiable computation of linguistic attributes394

and backpropagation of the error. The LD is im-395

plemented using a DeBERTa encoder (He et al.,396

2021) with the token embedding layer replaced397

with that of OPT-350M, followed by a projection398

layer, trained to minimize the mean squared error399

between predicted and gold attributes. For further400

details, refer to Appendix B.401

5.2 Datasets402

We use 6.8M text samples, totaling 360M train-403

ing tokens, drawn from diverse publicly available404

datasets. Each sample is truncated to a maximum405

of 100 tokens to prevent overfitting and ensure gen-406

eralizability.407

The datasets span a range of domains and writ- 408

ing styles, including web text (C4), paraphrase 409

pairs (MRPC), question pairs (QQP), and natu- 410

ral language inference datasets (ANLI, RTE, STS- 411

B, SNLI, MNLI, FeverNLI). All datasets are uti- 412

lized as single text samples, focusing on char- 413

acteristics such as user-generated content, for- 414

mally written text, automatically generated text, 415

etc. This diversity is crucial for training a ro- 416

bust model capable of handling various linguis- 417

tic phenomena. The following datasets were 418

used in our experiments: Common Crawl (C4) 419

(Raffel et al., 2020), Microsoft Research Para- 420

phrase Corpus (MRPC) (Dolan and Brockett, 421

2005), Quora Question Pairs (QQP) (Iyer et al., 422

2017), Adversarial NLI (ANLI) (Nie et al., 2020), 423

Recognizing Textual Entailment (RTE) (Dagan 424

et al., 2005), Semantic Textual Similarity Bench- 425

mark (STS-B) (Cer et al., 2017), Stanford Natu- 426

ral Language Inference (SNLI) (Bowman et al., 427

2015), Multi-Genre Natural Language Inference 428

(MNLI) (Williams et al., 2018), and FEVER NLI 429

(FeverNLI) (Thorne et al., 2018). 430

5.3 Metrics 431

Our model is evaluated on two key metrics. Most 432

Controlled Text Generation (CTG) papers use two 433

primary metrics for evaluation: attribute accuracy 434

and fluency. Attribute accuracy measures how well 435

the generated text adheres to the specified attributes, 436

while fluency assesses the grammatical and logical 437
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coherence of the text.438

Mean Squared Error (MSE) of attributes calcu-439

lates the error between attributes of the generation440

and the desired target attributes. For example, if the441

target attribute is sentence length, the MSE would442

measure the squared difference between the length443

of the generated sentence and the target length.444

Generations may achieve a good score on the target445

attributes while being non-fluent (i.e., logically or446

grammatically incorrect). To quantify the trade-off447

between control and fluency, we evaluate Fluency448

by prompting an LLM to answer whether the given449

sentence is fluent or not, and we report the fluency450

as the number of fluent paraphrases over total para-451

phrases. The LLM used is Gemma 2 (9B) (Team452

et al., 2024), and we include the prompt text in453

Appendix C.454

6 Results455

6.1 Main Results456

Table 1 provides a comprehensive overview of the457

performance of various models in controlled text458

generation tasks. The Reference model, which uses459

the original text as the generated output, serves460

as an upper bound for fluency, achieving a score461

of 72.7. This sets a benchmark for what can be462

considered reasonable fluency. On the other hand,463

the Vanilla LLM, which generates text without any464

attribute control, provides a baseline for the average465

MSE of a random sample, with an MSE of 2.03466

and a fluency score of 57.6. This indicates the467

typical performance of a model without any control468

mechanisms.469

LingGen (P-MASKING) stands out by achieving470

the best MSE of 0.90, demonstrating its capability471

in controlled generation. This low MSE indicates472

that LingGen can effectively manage and adhere to473

specified linguistic attributes, outperforming other474

models in this regard. Importantly, LingGen main-475

tains a fluency score of 83.6, which is not only476

significantly higher than the Vanilla LLM but also477

close to the Reference model, indicating that its flu-478

ency is not deteriorated by the control mechanisms.479

The LLama3.1 model achieves the highest flu-480

ency score of 94.5. Although the instruction fine-481

tuned LLama3.1 70B is generally thought to be482

steerable for most instructions and controls, it still483

fails with unusual and numerous attributes, as ev-484

idenced by its MSE of 2.27. This suggests that485

while LLama3.1 excels in generating fluent text, it486

lacks the ability to control specific attributes effec-487

tively. 488

Other models, such as PPLM and Fudge, show 489

varying degrees of success in controlled genera- 490

tion. PPLM, with an MSE of 5.99, struggles with 491

attribute control, while Fudge performs better with 492

an MSE of 3.24. These results align with their 493

reliance on attribute classifiers, which may not be 494

accurate enough to control the attributes effectively, 495

and that become noisier when the number of at- 496

tributes increases. The BOLT model achieves a rel- 497

atively low MSE of 2.59 and a high fluency score 498

of 88.9, indicating a good balance between control 499

and fluency. 500

Overall, the results demonstrate that LingGen (P- 501

MASKING) effectively balances attribute control 502

and fluency, making it a robust choice for applica- 503

tions requiring precise and adaptable text genera- 504

tion. 505

For a detailed analysis of the ablation studies, 506

please refer to Appendix B.1. 507

6.2 MSE Comparison Across Multiple 508

Attributes 509

To assess the effectiveness of multi-attribute con- 510

trol, we conducted an experiment comparing the 511

MSE of all models when controlling for different 512

numbers of attributes. Specifically, we evaluate 513

the MSE when 1, 5, 10, 20, or 40 attributes are 514

controlled simultaneously. For each number of at- 515

tributes, 2000 test samples are evaluated, each with 516

a random selection of attributes to control. For 517

each number of attributes, we repeat the experi- 518

ment for three random seeds to account for biases 519

due to the varying difficulty of the randomly cho- 520

sen attribute(s). This experimental design allows 521

us to evaluate the consistency and scalability of 522

each model’s attribute control capability across the 523

linguistic indices described in Section A. 524

Figure 2 illustrates the MSE performance of var- 525

ious models as the number of controlled attributes 526

increases. LingGen with P-Masking consistently 527

achieves the lowest MSE across all attribute counts, 528

demonstrating its superior ability to manage mul- 529

tiple attributes effectively. As the number of at- 530

tributes increases, models like No Masking and 531

Dropout show a significant rise in MSE, indicating 532

challenges in handling complex attribute configura- 533

tions. In contrast, LingGen with Fixed-rate Mask- 534

ing and BOLT maintain relatively stable MSEs, 535

though not as low as LingGen with P-Masking. 536

This highlights the robustness of the P-Masking 537

strategy in multi-attribute control tasks. 538
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Figure 3: Pairwise attribute relations. Each cell represents the normalized MSE for a primary controlled attribute
(rows) when paired with an accompanying attribute (columns). Lighter colors indicate higher errors.

The poor performance of models such as No539

Masking and Dropout is due to their inability to dy-540

namically adapt to multiple attribute configurations.541

These models lack the mechanisms to effectively542

manage and integrate diverse attributes, leading543

to higher MSEs. Additionally, models like Fudge544

and LLama3.1-70B struggle with scalability, as545

their attribute control methods are not optimized546

for handling a large number of attributes, resulting547

in performance degradation.548

6.3 Further Analysis of LingGen with549

P-MASKING550

To gain deeper insights into the behavior of551

LingGen with our proposed P-MASKING strat-552

egy, we conducted a detailed analysis of pairwise553

attribute interactions.554

We computed the pairwise MSE between all555

pairs of attributes. This analysis highlights which556

attributes become easier to control when accompa-557

nied by others and identifies those that effectively558

facilitate control over additional attributes.559

Marginal Effects of Accompanying At-560

tributes: "Reading Time" emerges as a positive561

accompanying attribute, often reducing the error562

when paired with others. This suggests that con-563

trolling for reading time can facilitate better man-564

agement of other attributes.565

Impact of Sophisticated Lexical Words: "#566

Sophisticated Lexical Words" serves as an effec-567

tive accompanying attribute for controlling both the568

number of characters and the number of sentences. 569

When "# Sophisticated Lexical Words" is included, 570

the model demonstrates a reduced error in manag- 571

ing these two attributes. This can be attributed to 572

the fact that sophisticated lexical words often have 573

a higher character count, which directly influences 574

the total number of characters. Additionally, the 575

presence of sophisticated lexical words tends to 576

structure sentences more clearly, thereby aiding in 577

the control of sentence count. 578

Highlighting Key Interactions: The interac- 579

tion between "Unique Sophisticated Words" and 580

"Sophisticated Lexical Words" results in a notable 581

increase in error, suggesting difficulty in control- 582

ling these nuanced aspects simultaneously. 583

This analysis provides valuable insights into 584

the complexities of controlling multiple attributes, 585

guiding future strategies for optimizing model per- 586

formance in multi-attribute settings. 587

7 Conclusion 588

We have presented LingGen, a novel approach to 589

controlled text generation that leverages a dynamic 590

P-MASKING strategy to achieve precise control 591

over a wide array of linguistic attributes. Our 592

method demonstrates significant improvements 593

in multi-attribute control, outperforming existing 594

state-of-the-art models in both attribute accuracy 595

and text fluency. The experimental results highlight 596

LingGen’s robustness and adaptability, particularly 597

in scenarios with varying attribute demands. Future 598

8



research directions include expanding the range of599

controllable attributes and applying LingGen to600

larger, more diverse datasets to further enhance its601

applicability and performance in real-world text602

generation tasks.603

8 Limitations604

First, the model’s performance is heavily dependent605

on the quality and diversity of the training data. Al-606

though we utilized a wide range of datasets, the607

model may still struggle with attributes or contexts608

not well-represented in the training set. This lim-609

itation suggests that the model’s generalizability610

could be improved by incorporating more diverse,611

comprehensive, longer-text datasets.612

Another limitation is the computational cost613

associated with training and deploying LingGen,614

which can be substantial, especially for larger mod-615

els or when scaling to extensive datasets. The P-616

MASKING strategy, while effective in enhancing617

attribute control, introduces additional complexity618

in tuning the model for specific applications. This619

requires careful calibration of the masking distribu-620

tion to ensure optimal performance, which can be621

resource-intensive and time-consuming. Moreover,622

the current implementation focuses on a predefined623

set of linguistic attributes, which may not encom-624

pass all the nuances required for certain specialized625

applications. This restricts the model’s applica-626

bility in domains where unique or highly specific627

attributes are critical.628

Future work should address these limitations629

by exploring more efficient training methods and630

expanding the attribute set. Additionally, extend-631

ing LingGen into instruction fine-tuning could be632

a promising direction. This approach would al-633

low the model to gain the benefits of a general-634

purpose language model (LLM) capable of per-635

forming a wide range of tasks and adapting to new636

circumstances. Instruction fine-tuning could en-637

hance LingGen’s flexibility and utility, enabling it638

to handle diverse tasks beyond controlled text gen-639

eration, thereby broadening its applicability and640

impact in various real-world applications.641
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A List of Linguistic Attributes950

We use expert-crafted linguistic indices as the con-951

trol attributes for CTG. Table 2 lists all the indices952

that we use. For the full descriptions please refer953

to Lu (2020), Lu (2012), and Lee and Lee (2023).954

Briefly, Automated Readability Index measures955

text complexity, Lexical words are content words956

(nouns, verbs, adjectives, adverbs), and Sophisti-957

cated words are less frequent words in the Ameri-958

can National Corpus. Age of acquisition refers to959

the age at which a word is typically learned.960

B Linguistic Attribute Predictor961

The Linguistic Discriminator (LD) is a crucial962

component for decoding-time algorithms, provid-963

ing an efficient estimation of linguistic attributes. It964

is pre-trained using a DeBERTa encoder (He et al.,965

2021) with the token embedding layer replaced966

with that of OPT-350M, followed by a projection967

layer, trained to minimize the mean squared error968

between predicted attributes (LD(x) = lp) and969

gold attributes (lx) as shown in Equation 2:970

ℓdisc(x) = ∥LD(x)− lx∥22. (2)971

The final MSE loss of the pre-trained LD is 0.16972

on our test set. The correlation between the pre-973

dicted MSE by the LD and the real MSE by the974

original linguistic attribute extractor tool is 0.8,975

which is sufficiently high for reliable utilization.976

B.1 Ablation Studies 977

To understand the contributions of our proposed 978

P-MASKING strategy and the impact of different 979

base models, we conducted two ablation studies. 980

Ablation Study: Impact of P-MASKING We 981

evaluated various versions of our model using dif- 982

ferent methods of masking attributes during train- 983

ing. The methods included: 984

• LingGen (No Masking): Attributes are not 985

masked during training, serving as a baseline 986

to assess the impact of masking. 987

• LingGen (Dropout): A fixed dropout rate of 988

0.3 is applied to the attributes, introducing 989

randomness to the training process. 990

• LingGen (Fixed Rate): A fixed masking rate 991

of 0.3 is applied, providing a consistent level 992

of attribute masking. 993

• LingGen (P-MASKING): Our proposed dy- 994

namic P-MASKING strategy, which adapts 995

the masking rate based on a power law distri- 996

bution. 997

Table 3 presents the results, demonstrating that 998

P-MASKING significantly outperforms baseline 999

methods in both MSE and fluency. The results 1000

show the effectiveness of P-MASKING in achiev- 1001

ing a balance between attribute control and text 1002

quality. 1003

Impact of Base Model We further evaluated 1004

LingGen with our proposed P-MASKING strategy 1005

using different base language models, specifically 1006

GPT-2 (Radford et al., 2019) and Pythia-410M (Bi- 1007

derman et al., 2023). Table 4 shows the results, 1008

highlighting that P-MASKING consistently deliv- 1009

ers superior performance across different base mod- 1010

els. This demonstrates that P-MASKING consis- 1011

tently enhances attribute control compared to other 1012

methods across different language model architec- 1013

tures. 1014

Impact of Different Integration Methods We 1015

also explored the effects of different methods for 1016

integrating linguistic attributes into the model. The 1017

integration methods compared were: 1018

• LingGen (Add to SOS): Our proposed 1019

method, where the encoded attribute repre- 1020

sentation is added to the Start-Of-Sequence 1021

(SOS) token embedding. 1022
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• LingGen (Add to All): The encoded attribute1023

representation is added to all decoder inputs1024

at each time step.1025

• LingGen (Add to Output): The encoded at-1026

tribute representation is added to the decoder1027

output at each time step.1028

• LingGen (Add to Logits): The encoded at-1029

tribute representation is added to the logits at1030

each time step.1031

All methods utilized the same P-MASKING strat-1032

egy. As shown in Table 5, adding the encoded1033

attribute representation to the SOS token embed-1034

ding yields the best performance, outperforming1035

other integration methods in terms of MSE. This1036

improvement can be attributed to several factors:1037

adding the attribute information to all input tokens1038

can excessively distort the language model, while1039

adding to the logits is computationally expensive1040

and introduces noise due to the large vocabulary1041

size. Furthermore, integrating attributes into the1042

outputs (hidden representations) proves to be less1043

effective. In contrast, incorporating the attribute in-1044

formation at the SOS token allows for efficient and1045

effective propagation of this information through-1046

out the entire sequence during generation, lever-1047

aging self-attention mechanisms. Notably, this ap-1048

proach demonstrates effectiveness both with and1049

without masking, showing its reliability. This in-1050

sight contributes to our understanding of how best1051

to integrate attribute information into language1052

models.1053

C Fluency Evaluation Prompt1054

We use the following prompt to evaluate fluency of1055

the outputs. The prompt is adapted from (Liu et al.,1056

2023b). Additionally, we post-process the output1057

logits and only select the top token out of "yes" and1058

"no".1059

The annotation task will provide texts cre-
ated by different models.
Annotator is required to classify to answer
whether the text is fluent or not fluent.
Fluency is defined as the ease and natural-
ness with which a text can be understood.
A fluent text should be straightforward to
read or hear, without any structural or lexi-
cal awkwardness or ambiguity.
When evaluating fluency, annotators should
consider two factors.
Grammaticality: Does the text follow stan-
dard grammatical rules?
Coherence: Does the text make sense in the
context in which it is presented?
Here are some positive and negative sam-
ples corresponding to each factor.
First, Grammaticality.
Positive example: "The cat is sleeping
peacefully on the soft, fluffy pillow." This
text follows standard grammatical rules,
with proper subject-verb agreement and ad-
jective placement.
Negative example: "The cat are sleep peace-
ful on the soft pillow." This text contains
grammatical errors, with a subject-verb dis-
agreement and a missing adjective ending.
Second, Coherence.
Positive example: "After finishing her work,
she decided to take a walk in the park." This
text makes sense and flows logically, with a
clear cause-and-effect relationship.
Negative example: "The concert was great,
but I forgot my keys at home." This text
lacks coherence, as there is no clear connec-
tion between the two clauses.
Annotators should not take into account the
factual correctness or completeness of the
text.
If the annotator finds it challenging to select
a clear winner, they should select the text
that is most similar in fluency to the other
two texts.
Annotators should rely on their judgment
and knowledge while assessing fluency, but
consistency in their annotations should also
be a priority.
Answer only using "yes" or "no", with no
additional commentary or explanation.
Sentence:

1060
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# Unique sophisticated words
# Unique lexical words
# Unique sophisticated lexical words
# Total words
# Total sophisticated words
Lexical sophistication (unique)
Verb sophistication
Ratio of unique words
Ratio of unique verbs
Ratio of unique adjectives
Ratio of unique adverbs
# Dependent clauses
# Clauses
# T-units
# Complex T-units
# Complex nominals
# Stop Words
# Sentences
# Characters
Average Words Per Sentence
Average Characters Per Sentence
Average Characters Per Word
Average Syllables Per Sentence
Total Age Of Acquistion Of Words
# Named Entities Norp
# Named Entities Gpe
# Named Entities Law
# Named Entities Money
# Named Entities Ordinal
# Coordinating Conjunctions
# Nouns
# Numerals
# Proper Nouns
# Subordinating Conjunctions
Automated Readability Index
Reading Time For Average Readers

Table 2: Linguistic indices used in this paper.

Method MSE Fluency

No Masking 1.01 86.15%
Dropout 1.00 86.22%
Fixed Rate 1.13 86.35%
P-MASKING 0.90 86.50%

Table 3: Comparison of masking strategies, demonstrat-
ing that P-MASKING outperforms baseline methods in
both MSE and fluency.

Model MSE Fluency

Pythia-410M
No Masking 2.58 78.15
Fixed Rate 2.39 46.70
P-MASKING 2.04 78.75

GPT-2
No Masking 2.69 64.25
Fixed Rate 3.75 49.85
P-MASKING 2.47 61.55

Table 4: Performance of P-MASKING across different
base models, highlighting its superior efficacy compared
to other masking strategies.

Method MSE Fluency

No Masking
SOS 1.01 86.2
All 2.60 0.0
Output 1.11 80.2
Logits 1.52 80.5

P-Masking
SOS 0.90 83.5
All 3.52 0.0
Output 1.76 80.7
Logits 1.31 81.9

Table 5: Evaluation of integration methods, justifying
that the SOS method provides the best performance in
terms of mean squared error and fluency.
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