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Abstract

We introduce LingGen, a novel approach for
controlled text generation that offers precise
control over a wide array of linguistic at-
tributes, even as the number of attributes varies.
LingGen employs a dynamic P-MASKING
strategy, which samples masking rates from a
power law distribution during training. This in-
novative approach enables the model to develop
robust representations and adapt its attribute
control capabilities across a variable number
of attributes, from a single attribute to multi-
ple complex configurations. The P-MASKING
technique enhances LingGen’s ability to man-
age different levels of attribute visibility, result-
ing in superior performance in multi-attribute
generation tasks. Our experiments demonstrate
that LingGen surpasses current state-of-the-art
models in both attribute control accuracy and
text fluency, particularly excelling in scenarios
with varying attribute demands. Additionally,
our ablation studies highlight the effectiveness
of P-MASKING and the influence of different
base language models on performance. These
findings demonstrate LingGen’s potential for
applications requiring precise and adaptable
control over multiple linguistic attributes in text
generation.

1 Introduction

The demand for controlled text generation (CTG)
has surged across various domains, including con-
tent creation, personalized communication, and au-
tomated writing. This task involves generating text
that adheres to specific constraints, which is cru-
cial for meeting diverse user requirements (Prab-
humoye et al., 2020). However, achieving fine-
grained control over linguistic features remains a
significant challenge (Liu et al., 2023a).

Existing CTG methods have shown promise in
controlling high-level attributes like sentiment or
topic, but they often struggle with finer-grained lin-
guistic features. Traditional models tend to suffer

from inefficiencies and quality degradation when
handling multiple controls, especially with com-
plex linguistic attributes (Li et al., 2018; Liu et al.,
2023a).

Recent advancements in language model pre-
training have highlighted the complementary role
of denoising objectives alongside traditional causal
language modeling (CLM) (Raffel et al., 2020; Tay
et al.; Zeng et al.). Denoising objectives, often re-
ferred to as infilling tasks, enable models to learn
to "fill in the blanks" within a sequence, thereby en-
hancing their ability to handle tasks requiring bidi-
rectional context, such as infilling and long-range
dependency modeling (Wettig et al., 2023; Clark
et al., 2020). This mixture of denoising and CLM
has been shown to improve model robustness and
sample efficiency, particularly in scenarios where
both prefix and suffix contexts are available (Brown
et al., 2020; Hoffmann et al., 2022).

In this paper, we introduce LingGen, a novel
approach for CTG that leverages a dynamic mask-
ing strategy inspired by denoising objectives. Our
method, P-MASKING, samples masking rates
from a power law distribution, allowing the model
to learn robust representations and generalize its
attribute control capabilities to a variable number
of attributes (from 1 to k). This approach addresses
the limitations of existing techniques by incorporat-
ing the strengths of denoising objectives, enabling
improved performance in multi-attribute generation
tasks.

Our contributions are as follows: (1) We propose
a novel P-MASKING strategy that enhances the
flexibility and effectiveness of CTG models by en-
abling control over a variable number of attributes.
(2) We demonstrate the superior performance of
LingGen in multi-attribute generation tasks com-
pared to state-of-the-art baselines, particularly ex-
celling in scenarios with varying attribute demands.
(3) We provide insights into the impact of different
base language models on performance. The rest



of the paper is organized as follows: Section 2 dis-
cusses the background and related work, Section
3 details our methodology, and Section 4 presents
our experimental results.

2 Background

Controlled text generation has increasingly focused
on methods to regulate multiple attributes simul-
taneously, such as sentiment, tense, formality, or
specific keywords (Shen et al., 2017). However,
traditional models often lack the flexibility to adapt
to new configurations, leading to inefficiencies and
quality degradation when handling multiple con-
trols, especially with finer-grained linguistic at-
tributes (Li et al., 2018; Liu et al., 2023a).

2.1 Compositional Text Control

Recent advancements have explored compositional
text control in latent space by leveraging compact,
differentiable representations. Techniques based
on ordinary differential equations (ODEs) and la-
tent space samplers have shown promise in effi-
ciently composing multiple control operations, sig-
nificantly reducing computational overhead and
maintaining high text quality (Liu et al., 2023a;
Ding et al., 2023). These methods align with the
growing interest in developing models that adapt to
dynamic and flexible control inputs across various
domains without the need for extensive retraining
or costly optimizations (Yang et al., 2023).

2.2 Denoising Objectives

In parallel, research into Masked Language Mod-
els (MLMs) has also highlighted the importance of
masking strategies to improve model efficiency and
performance (Devlin et al., 2019). Conventional
wisdom in MLM training has prescribed masking
15% of tokens (Devlin et al., 2019), but recent
work challenges this approach, showing that higher
masking rates—up to 40% or even 80%—can en-
hance performance in certain scenarios without
sacrificing representational quality (Wettig et al.,
2023).

Building on these findings, we propose P-
MASKING, a novel masking strategy that sam-
ples the masking rate from a power law distribu-
tion (Clauset et al., 2009). This approach leverages
the flexibility of variable masking rates, allowing
the model to better handle a diverse and dynamic
set of attribute controls, ranging from 1 to k at-
tributes. By incorporating a power law distribution,

P-MASKING addresses limitations found in fixed-
rate masking strategies, enabling improved control
over multi-attribute text generation (Clark et al.,
2020). The power law distribution favors lower
masking rates, which introduces less noise and
helps the model learn more effectively in typical
cases (Newman, 2005). However, the model also
learns to handle edge cases with higher masking
rates, ensuring robust performance across varying
levels of attribute visibility (Wettig et al., 2023).

Our method extends principles from prior work,
such as PMI-Masking (Levine et al., 2021), which
aimed to move beyond uniform masking strategies,
and infilling objectives like those explored in UL2
and GLM-130B (Tay et al.; Zeng et al.; Levine
et al., 2021). With P-MASKING, we introduce a
principled approach that allows for a smoother and
more effective composition of multiple attributes,
ensuring better alignment between the generated
text and the desired attribute configurations.

2.3 Controlled Text Generation

Controlled Text Generation has become a vital tool
in NLP, enabling the creation of text tailored to
specific requirements. Works like Shi et al. (2024)
introduced fine-grained control codes (LiFi) for
sentiment manipulation, while Liu et al. (2023b)
proposed BOLT, enabling tunable biases for fac-
tual consistency. Pei et al. (2023) further explored
prefix-adaptive decoding for controlling text style.
However, these methods primarily focus on high-
level properties like sentiment, factual accuracy, or
style in general.

The integration of denoising objectives in pre-
training, as seen in models like UL2 and GLM, has
demonstrated the potential for enhancing model ca-
pabilities in handling diverse linguistic tasks (Tay
et al.; Zeng et al.). These objectives complement
traditional CLM by providing models with the abil-
ity to process and generate text with both prefix and
suffix contexts, a feature particularly beneficial for
applications such as code generation and document
completion (Chowdhery et al., 2023; Roberts et al.,
2023).

Our work focuses on fine-grained control over
multiple linguistic attributes, building on the in-
sights from denoising objectives to enhance the
flexibility and effectiveness of CTG models.
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Figure 1: Overview of the LingGen architecture for controlled text generation. 1) Masking Rate Sampler: During
training, masking rates (p.,,q4s%) are sampled from a truncated Pareto distribution, balancing attribute visibility. This
dynamic masking ensures robust learning by varying the number of attributes visible to the model. 2) Feature
Encoder: The linguistic attributes (L1, . . . , L i) are encoded into embeddings (E1, . . . , Ex) using a linear layer that
maps R! to R¢, where d is the transformer hidden size. These embeddings are combined with token type embeddings
(11, ...,Tk) to generate a global feature representation that feeds into the generative model. 3) Language Model:
The Transformer Decoder generates text tokens (91, . . . , ¥, ) conditioned on the encoded attributes. The special start
token (< s >) combines with the global feature representation to guide generation, enabling fine-grained control

over multiple linguistic attributes.

3 Linguistic Generation with LingGen

Given a set of desired linguistic attributes, @ =
{L1,..., Ly}, where each L; represents a specific
linguistic feature (e.g., sentence length, presence of
keywords, number of unique sophisticated words),
the task is to generate text that exhibits those at-
tributes. We use 40 attributes, with the specific
indices used described in Section A. Let Y be the
space of possible generated texts. Our goal is to
find a model G that takes the desired attributes a as
input and generates a texty = G(a) that minimizes
a loss function L(V (y),a), where V : Y — R is
a function that extracts a fixed-size vector represen-
tation of the attributes present in a given text (Hu
et al., 2017). This can be expressed as finding
y = argmingey L(V (y),a). Note that there can
be multiple solutions y that minimize this loss. For
example, if a specifies a sentence of length 10,
there are many possible sentences of length 10 that
could be generated. However, as the number of at-
tributes in @ increases and the granularity of these
attributes becomes finer (e.g., specifying not just

sentence length but also specific keywords, syn-
tactic structure, and sentiment), the set of possible
solutions shrinks. In the extreme case, with a suf-
ficiently large and specific set of attributes, there
may be only one or a very small number of sen-
tences y that satisfy all the constraints (Holtzman
et al., 2020).

Instead of using reinforcement learning, which
has drawbacks like lower effectiveness compared
to supervised learning and reliance on a potentially
difficult-to-train attribute discriminator V', we train
the model using cross-entropy loss on the predicted
token sequence, conditioned on the input attributes.
Cross-entropy loss is particularly useful because it
aligns with the model’s training objective of pre-
dicting the next word in a sequence, thus reducing
the discrepancy between training and test condi-
tions. This helps mitigate the accumulation of
errors during sequence generation, as the model
learns to generate text that is both fluent and coher-
ent while conforming to the desired attributes (Ran-
zato et al., 2016; Bengio et al., 2000). Training on



a large and diverse dataset with a wide variety of
attribute combinations allows the model to learn
the underlying relationship between attributes and
text, enabling it to generate text that is both flu-
ent and coherent while conforming to the desired
attributes (Radford et al., 2019). The attribute val-
ues themselves are derived using linguistic analysis
tools (Lu, 2020, 2012; Lee and Lee, 2023). These
tools provide the function V' (y) that maps gener-
ated text y to a vector of attribute values in R¥.

LingGen consists of three main components:
a Masking Rate Sampler, a Feature Encoder,
and a Language Model (illustrated in Figure 1).
These components work together to apply the P-
MASKING mechanism and integrate attributes into
the language model, allowing for flexible control
over a variable number of attributes.

3.1 Attribute Integration

The k linguistic attributes @ = {L1, ..., L} are en-
coded into a hidden representation, which is then
added element-wise to the embedding of a special
Start-Of-Sequence (SOS) token. This injection of
attribute information at the beginning of the gener-
ation process provides a strong signal to the model
about the desired text characteristics. We chose
to use the OPT-350M (Zhang et al., 2022) model
as the base model for our experiments due to its
balance of strong performance and computational
efficiency. We also experimented with GPT-2 (Rad-
ford et al., 2019) and Pythia-410M (Biderman et al.,
2023) to assess the impact of model size on perfor-
mance.

The Feature Encoder integrates linguistic at-
tributes into the model’s latent space. Each lin-
guistic attribute (L;) is transformed into an em-
bedding (E;) using a linear layer that maps R' to
R<, where d is the transformer hidden size. These
embeddings are combined with token type embed-
dings (11,...,Tk) to generate a global feature
vector, encapsulating the overall attribute infor-
mation, which is passed to the Language Model.
The feature encoder utilizes a novel strategy, P-
MASKING, where masking rates (p;,4s%) are sam-
pled from a truncated Pareto distribution. This
balances attribute visibility during training, allow-
ing the model to handle varying levels of visibility
and generalize across attributes.

The Language Model , a Transformer Decoder,
generates text tokens (¢, . . ., §,) conditioned on

the input embeddings and the global attribute fea-
ture vector. The global feature vector, along with a
special start token (< s >), is fed into the decoder,
enabling precise control over linguistic attributes.
The decoder attends to both attribute representa-
tions and input context, ensuring alignment with
desired attribute configurations.

3.2 P-MASKING: A Dynamic Masking
Strategy

During training, we employ P-MASKING, a dy-
namic masking strategy. Masking attributes pre-
vents memorization of training data and mitigates
spurious correlations. By randomly masking some
attributes, the model learns to infer missing infor-
mation, leading to more robust control and disen-
tangled attribute representations.

P-MASKING samples masking rates from
a truncated Pareto distribution (Burroughs and
Tebbens, 2001), enabling the model to learn robust
representations and generalize its attribute control
capabilities to a wider range of attribute visibil-
ity levels. For each sample, a masking rate m is
sampled, controlling the proportion of attributes
masked. This allows the model to learn to con-
trol any number of attributes. The probability of
masking m percent of the attributes is given by:

b 1
T 1—27bmbl

for 0 < m < 1, where b is a shape parameter.
In our experiments, b is tuned such that the dis-
tribution yields a masking rate of 30% or lower
in over 60% of samples. The sampled masking
rate m determines how many attributes are masked.
Masked attributes are replaced with a zero vector
and excluded from the self-attention (Vaswani et al.,
2017).

Advantages over Fixed-Rate Masking: This
dynamic strategy offers several advantages. It in-
troduces more randomness during training, forc-
ing robust and generalizable representations. The
power law distribution allows a nuanced approach:
frequent lower masking rates preserve the learn-
ing of accurate attribute representations, while less
frequent higher rates force the model to handle
missing attributes, crucial for multi-attribute con-
trol.

P(pmask = m) (1)

4 Experiments

We evaluate LingGen by comparing it against sev-
eral state-of-the-art CTG baselines. All baselines



Method

MSE () Fluency (1) Time per token (ms) ({)

No Control
Reference 0.00 72.7 - -
Vanilla LLM (Zhang et al., 2022) 2.03 57.6 25 (1x)
Decoding-time Control
PPLM (Dathathri et al., 2020) 5.99 67.7 1515  (61x%)
Fudge (Yang and Klein, 2021) 3.24 65.1 112 (5%)
COLD (Qin et al., 2022) 3.99 49.1 3846 (155%)
BOLT (Liu et al., 2023b) 2.59 88.9 114 (5x)
LLama3.1 (Dubey et al., 2024) 2.27 94.5 162 (7x)
Mix&Match (Mireshghallah et al., 2022) 1.58 42.5 5882 (237x%)
Fine-tuned LLM
MCTune (LLama-7B) (Nguyen et al., 2024) 2.51 97.3 68 (3x)
MCTune (OPT-350M) (Nguyen et al., 2024) 9.90 76.3 46 (2x)
LingGen (P-MASKING) 0.90 83.6 25 (1x)

Table 1: Comparison of model performance across different methods. The table presents the MSE, fluency scores,
and time per token for each model. Lower MSE and time per token values indicate better performance, while higher

fluency scores are preferred.

(except Llama 3.1) are re-implemented using OPT-
350M as a base-model. We consider the following
baselines:

5 Experimental Setup

We train LingGen using LoRA with » = 64,
alpha = 128, a batch size of 140, using AdamW
optimizer, for 3 epochs. We select the model from
the best validation step. We use a max length of
100 tokens, and train on a single A100 GPU.

Next, we re-train MCTune on opt-350m for the
same number of tokens and epochs as LingGen.
Because MCTune requires In-Context Fine-Tuning
(ICFT) with a long prompt, and a context up to
1024 tokens, it takes 216 GPU hours to train, while
LingGen takes 18 GPU hours only. Subsequently,
MCTune was trained on an HPC using 12 GPUs.
We tune the hyper-parameters of all baselines using
grid search.

5.1 Baselines

Vanilla LLM Generation (Zhang et al., 2022):
This baseline generates text by randomly sampling
from the probability distribution of the language
model, without any conditioning on the desired
attributes. This serves as a basic sanity check to
ensure that our model is indeed learning to control
for the attributes.

Reference: This baseline uses the reference sen-
tence as the generated text. This baseline provides

an upper bound on the performance, as it assumes
that the model can perfectly reproduce the refer-
ence text.

Mix&Match (Mireshghallah et al., 2022):
This baseline interprets controllable generation as
sampling from an energy-based model whose en-
ergy values are derived from the scores of a masked
language model (MLM) filling a mask token and
an attribute discriminator.

PPLM (Dathathri et al., 2020): This baseline
guides text generation by combining a pre-trained
language model with attribute classifiers, allow-
ing control over attributes without retraining the
language model.

Fudge (Yang and Klein, 2021): This base-
line adjusts the language model’s probabilities by
adding the likelihood of an attribute discriminator
to the language model likelihood.

LLama3.1 (70B) Chat Model (Dubey et al.,
2024): This baseline employs the LLama3.1 (70B)
chat model, which has been instruction-tuned to
follow instructions and complete tasks. We use this
as a representative of large language models that
have been trained on a massive dataset of text and
code.

BOLT (Liu et al., 2023b): This baseline utilizes
tunable biases to directly modify the output logits
of the language model.

COLD Decoding (Qin et al., 2022): This base-
line frames constrained generation as an energy
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Figure 2: Model Performance by number of attributes controlled. The graph shows the MSE for different models
as the number of controlled attributes increases. LingGen (P-Masking) consistently achieves the lowest MSE,

indicating effective multi-attribute control.

minimization problem and uses gradient-based
sampling to generate text that adheres to the given
constraints.

MCTune (LLama2-7B) (Nguyen et al., 2024):
This baseline leverages the MCTune method,
which incorporates multiple linguistic complexity
values as controls during instruction tuning to con-
trol the complexity of the generated text.

MCTune (OPT-350M) (Nguyen et al., 2024):
This baseline adapts the MCTune method to the
OPT-350M model, enabling control over multiple
linguistic complexities in the generated text.

Decoding-time algorithms leverage a linguistic
discriminator (LD) to estimate the linguistic at-
tributes of generated text. This component is in-
dependently pre-trained and frozen, allowing for
differentiable computation of linguistic attributes
and backpropagation of the error. The LD is im-
plemented using a DeBERTa encoder (He et al.,
2021) with the token embedding layer replaced
with that of OPT-350M, followed by a projection
layer, trained to minimize the mean squared error
between predicted and gold attributes. For further
details, refer to Appendix B.

5.2 Datasets

We use 6.8M text samples, totaling 360M train-
ing tokens, drawn from diverse publicly available
datasets. Each sample is truncated to a maximum
of 100 tokens to prevent overfitting and ensure gen-
eralizability.

The datasets span a range of domains and writ-
ing styles, including web text (C4), paraphrase
pairs (MRPC), question pairs (QQP), and natu-
ral language inference datasets (ANLI, RTE, STS-
B, SNLI, MNLI, FeverNLI). All datasets are uti-
lized as single text samples, focusing on char-
acteristics such as user-generated content, for-
mally written text, automatically generated text,
etc. This diversity is crucial for training a ro-
bust model capable of handling various linguis-
tic phenomena. The following datasets were
used in our experiments: Common Crawl (C4)
(Raffel et al., 2020), Microsoft Research Para-
phrase Corpus (MRPC) (Dolan and Brockett,
2005), Quora Question Pairs (QQP) (Iyer et al.,
2017), Adversarial NLI (ANLI) (Nie et al., 2020),
Recognizing Textual Entailment (RTE) (Dagan
et al., 2005), Semantic Textual Similarity Bench-
mark (STS-B) (Cer et al., 2017), Stanford Natu-
ral Language Inference (SNLI) (Bowman et al.,
2015), Multi-Genre Natural Language Inference
(MNLI) (Williams et al., 2018), and FEVER NLI
(FeverNLI) (Thorne et al., 2018).

5.3 Metrics

Our model is evaluated on two key metrics. Most
Controlled Text Generation (CTG) papers use two
primary metrics for evaluation: attribute accuracy
and fluency. Attribute accuracy measures how well
the generated text adheres to the specified attributes,
while fluency assesses the grammatical and logical



coherence of the text.

Mean Squared Error (MSE) of attributes calcu-
lates the error between attributes of the generation
and the desired target attributes. For example, if the
target attribute is sentence length, the MSE would
measure the squared difference between the length
of the generated sentence and the target length.
Generations may achieve a good score on the target
attributes while being non-fluent (i.e., logically or
grammatically incorrect). To quantify the trade-off
between control and fluency, we evaluate Fluency
by prompting an LLM to answer whether the given
sentence is fluent or not, and we report the fluency
as the number of fluent paraphrases over total para-
phrases. The LLM used is Gemma 2 (9B) (Team
et al., 2024), and we include the prompt text in
Appendix C.

6 Results

6.1 Main Results

Table 1 provides a comprehensive overview of the
performance of various models in controlled text
generation tasks. The Reference model, which uses
the original text as the generated output, serves
as an upper bound for fluency, achieving a score
of 72.7. This sets a benchmark for what can be
considered reasonable fluency. On the other hand,
the Vanilla LLM, which generates text without any
attribute control, provides a baseline for the average
MSE of a random sample, with an MSE of 2.03
and a fluency score of 57.6. This indicates the
typical performance of a model without any control
mechanisms.

LingGen (P-MASKING) stands out by achieving
the best MSE of 0.90, demonstrating its capability
in controlled generation. This low MSE indicates
that LingGen can effectively manage and adhere to
specified linguistic attributes, outperforming other
models in this regard. Importantly, LingGen main-
tains a fluency score of 83.6, which is not only
significantly higher than the Vanilla LLM but also
close to the Reference model, indicating that its flu-
ency is not deteriorated by the control mechanisms.

The LLama3.1 model achieves the highest flu-
ency score of 94.5. Although the instruction fine-
tuned LLama3.1 70B is generally thought to be
steerable for most instructions and controls, it still
fails with unusual and numerous attributes, as ev-
idenced by its MSE of 2.27. This suggests that
while LLama3.1 excels in generating fluent text, it
lacks the ability to control specific attributes effec-

tively.

Other models, such as PPLM and Fudge, show
varying degrees of success in controlled genera-
tion. PPLM, with an MSE of 5.99, struggles with
attribute control, while Fudge performs better with
an MSE of 3.24. These results align with their
reliance on attribute classifiers, which may not be
accurate enough to control the attributes effectively,
and that become noisier when the number of at-
tributes increases. The BOLT model achieves a rel-
atively low MSE of 2.59 and a high fluency score
of 88.9, indicating a good balance between control
and fluency.

Overall, the results demonstrate that LingGen (P-
MASKING) effectively balances attribute control
and fluency, making it a robust choice for applica-
tions requiring precise and adaptable text genera-
tion.

For a detailed analysis of the ablation studies,
please refer to Appendix B.1.

6.2 MSE Comparison Across Multiple
Attributes

To assess the effectiveness of multi-attribute con-
trol, we conducted an experiment comparing the
MSE of all models when controlling for different
numbers of attributes. Specifically, we evaluate
the MSE when 1, 5, 10, 20, or 40 attributes are
controlled simultaneously. For each number of at-
tributes, 2000 test samples are evaluated, each with
a random selection of attributes to control. For
each number of attributes, we repeat the experi-
ment for three random seeds to account for biases
due to the varying difficulty of the randomly cho-
sen attribute(s). This experimental design allows
us to evaluate the consistency and scalability of
each model’s attribute control capability across the
linguistic indices described in Section A.

Figure 2 illustrates the MSE performance of var-
ious models as the number of controlled attributes
increases. LingGen with P-Masking consistently
achieves the lowest MSE across all attribute counts,
demonstrating its superior ability to manage mul-
tiple attributes effectively. As the number of at-
tributes increases, models like No Masking and
Dropout show a significant rise in MSE, indicating
challenges in handling complex attribute configura-
tions. In contrast, LingGen with Fixed-rate Mask-
ing and BOLT maintain relatively stable MSEs,
though not as low as LingGen with P-Masking.
This highlights the robustness of the P-Masking
strategy in multi-attribute control tasks.
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Figure 3: Pairwise attribute relations. Each cell represents the normalized MSE for a primary controlled attribute
(rows) when paired with an accompanying attribute (columns). Lighter colors indicate higher errors.

The poor performance of models such as No
Masking and Dropout is due to their inability to dy-
namically adapt to multiple attribute configurations.
These models lack the mechanisms to effectively
manage and integrate diverse attributes, leading
to higher MSEs. Additionally, models like Fudge
and LLama3.1-70B struggle with scalability, as
their attribute control methods are not optimized
for handling a large number of attributes, resulting
in performance degradation.

6.3 Further Analysis of LingGen with
P-MASKING

To gain deeper insights into the behavior of
LingGen with our proposed P-MASKING strat-
egy, we conducted a detailed analysis of pairwise
attribute interactions.

We computed the pairwise MSE between all
pairs of attributes. This analysis highlights which
attributes become easier to control when accompa-
nied by others and identifies those that effectively
facilitate control over additional attributes.

Marginal Effects of Accompanying At-
tributes: "Reading Time" emerges as a positive
accompanying attribute, often reducing the error
when paired with others. This suggests that con-
trolling for reading time can facilitate better man-
agement of other attributes.

Impact of Sophisticated Lexical Words: "#
Sophisticated Lexical Words" serves as an effec-
tive accompanying attribute for controlling both the

number of characters and the number of sentences.
When "# Sophisticated Lexical Words" is included,
the model demonstrates a reduced error in manag-
ing these two attributes. This can be attributed to
the fact that sophisticated lexical words often have
a higher character count, which directly influences
the total number of characters. Additionally, the
presence of sophisticated lexical words tends to
structure sentences more clearly, thereby aiding in
the control of sentence count.

Highlighting Key Interactions: The interac-
tion between "Unique Sophisticated Words" and
"Sophisticated Lexical Words" results in a notable
increase in error, suggesting difficulty in control-
ling these nuanced aspects simultaneously.

This analysis provides valuable insights into
the complexities of controlling multiple attributes,
guiding future strategies for optimizing model per-
formance in multi-attribute settings.

7 Conclusion

We have presented LingGen, a novel approach to
controlled text generation that leverages a dynamic
P-MASKING strategy to achieve precise control
over a wide array of linguistic attributes. Our
method demonstrates significant improvements
in multi-attribute control, outperforming existing
state-of-the-art models in both attribute accuracy
and text fluency. The experimental results highlight
LingGen’s robustness and adaptability, particularly
in scenarios with varying attribute demands. Future



research directions include expanding the range of
controllable attributes and applying LingGen to
larger, more diverse datasets to further enhance its
applicability and performance in real-world text
generation tasks.

8 Limitations

First, the model’s performance is heavily dependent
on the quality and diversity of the training data. Al-
though we utilized a wide range of datasets, the
model may still struggle with attributes or contexts
not well-represented in the training set. This lim-
itation suggests that the model’s generalizability
could be improved by incorporating more diverse,
comprehensive, longer-text datasets.

Another limitation is the computational cost
associated with training and deploying LingGen,
which can be substantial, especially for larger mod-
els or when scaling to extensive datasets. The P-
MASKING strategy, while effective in enhancing
attribute control, introduces additional complexity
in tuning the model for specific applications. This
requires careful calibration of the masking distribu-
tion to ensure optimal performance, which can be
resource-intensive and time-consuming. Moreover,
the current implementation focuses on a predefined
set of linguistic attributes, which may not encom-
pass all the nuances required for certain specialized
applications. This restricts the model’s applica-
bility in domains where unique or highly specific
attributes are critical.

Future work should address these limitations
by exploring more efficient training methods and
expanding the attribute set. Additionally, extend-
ing LingGen into instruction fine-tuning could be
a promising direction. This approach would al-
low the model to gain the benefits of a general-
purpose language model (LLM) capable of per-
forming a wide range of tasks and adapting to new
circumstances. Instruction fine-tuning could en-
hance LingGen'’s flexibility and utility, enabling it
to handle diverse tasks beyond controlled text gen-
eration, thereby broadening its applicability and
impact in various real-world applications.
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A List of Linguistic Attributes

We use expert-crafted linguistic indices as the con-
trol attributes for CTG. Table 2 lists all the indices
that we use. For the full descriptions please refer
to Lu (2020), Lu (2012), and Lee and Lee (2023).
Briefly, Automated Readability Index measures
text complexity, Lexical words are content words
(nouns, verbs, adjectives, adverbs), and Sophisti-
cated words are less frequent words in the Ameri-
can National Corpus. Age of acquisition refers to
the age at which a word is typically learned.

B Linguistic Attribute Predictor

The Linguistic Discriminator (LD) is a crucial
component for decoding-time algorithms, provid-
ing an efficient estimation of linguistic attributes. It
is pre-trained using a DeBERTa encoder (He et al.,
2021) with the token embedding layer replaced
with that of OPT-350M, followed by a projection
layer, trained to minimize the mean squared error
between predicted attributes (LD(xz) = [P) and
gold attributes (I*) as shown in Equation 2:

laise(w) = [LD(z) — I*]13. 2)

The final MSE loss of the pre-trained LD is 0.16
on our test set. The correlation between the pre-
dicted MSE by the LD and the real MSE by the
original linguistic attribute extractor tool is 0.8,
which is sufficiently high for reliable utilization.
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B.1 Ablation Studies

To understand the contributions of our proposed
P-MASKING strategy and the impact of different
base models, we conducted two ablation studies.

Ablation Study: Impact of P-MASKING We
evaluated various versions of our model using dif-
ferent methods of masking attributes during train-
ing. The methods included:

* LingGen (No Masking): Attributes are not
masked during training, serving as a baseline
to assess the impact of masking.

* LingGen (Dropout): A fixed dropout rate of
0.3 is applied to the attributes, introducing
randomness to the training process.

* LingGen (Fixed Rate): A fixed masking rate
of 0.3 is applied, providing a consistent level
of attribute masking.

* LingGen (P-MASKING): Our proposed dy-
namic P-MASKING strategy, which adapts
the masking rate based on a power law distri-
bution.

Table 3 presents the results, demonstrating that
P-MASKING significantly outperforms baseline
methods in both MSE and fluency. The results
show the effectiveness of P-MASKING in achiev-
ing a balance between attribute control and text
quality.

Impact of Base Model We further evaluated
LingGen with our proposed P-MASKING strategy
using different base language models, specifically
GPT-2 (Radford et al., 2019) and Pythia-410M (Bi-
derman et al., 2023). Table 4 shows the results,
highlighting that P-MASKING consistently deliv-
ers superior performance across different base mod-
els. This demonstrates that P-MASKING consis-
tently enhances attribute control compared to other
methods across different language model architec-
tures.

Impact of Different Integration Methods We
also explored the effects of different methods for
integrating linguistic attributes into the model. The
integration methods compared were:

* LingGen (Add to SOS): Our proposed
method, where the encoded attribute repre-

sentation is added to the Start-Of-Sequence
(SOS) token embedding.
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¢ LingGen (Add to All): The encoded attribute
representation is added to all decoder inputs
at each time step.

* LingGen (Add to Output): The encoded at-
tribute representation is added to the decoder
output at each time step.

* LingGen (Add to Logits): The encoded at-
tribute representation is added to the logits at
each time step.

All methods utilized the same P-MASKING strat-
egy. As shown in Table 5, adding the encoded
attribute representation to the SOS token embed-
ding yields the best performance, outperforming
other integration methods in terms of MSE. This
improvement can be attributed to several factors:
adding the attribute information to all input tokens
can excessively distort the language model, while
adding to the logits is computationally expensive
and introduces noise due to the large vocabulary
size. Furthermore, integrating attributes into the
outputs (hidden representations) proves to be less
effective. In contrast, incorporating the attribute in-
formation at the SOS token allows for efficient and
effective propagation of this information through-
out the entire sequence during generation, lever-
aging self-attention mechanisms. Notably, this ap-
proach demonstrates effectiveness both with and
without masking, showing its reliability. This in-
sight contributes to our understanding of how best
to integrate attribute information into language
models.

C Fluency Evaluation Prompt

We use the following prompt to evaluate fluency of
the outputs. The prompt is adapted from (Liu et al.,
2023b). Additionally, we post-process the output
logits and only select the top token out of "yes" and

n n

no .
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The annotation task will provide texts cre-
ated by different models.

Annotator is required to classify to answer
whether the text is fluent or not fluent.
Fluency is defined as the ease and natural-
ness with which a text can be understood.
A fluent text should be straightforward to
read or hear, without any structural or lexi-
cal awkwardness or ambiguity.

When evaluating fluency, annotators should
consider two factors.

Grammaticality: Does the text follow stan-
dard grammatical rules?

Coherence: Does the text make sense in the
context in which it is presented?

Here are some positive and negative sam-
ples corresponding to each factor.

First, Grammaticality.

Positive example: "The cat is sleeping
peacefully on the soft, fluffy pillow." This
text follows standard grammatical rules,
with proper subject-verb agreement and ad-
jective placement.

Negative example: "The cat are sleep peace-
ful on the soft pillow." This text contains
grammatical errors, with a subject-verb dis-
agreement and a missing adjective ending.
Second, Coherence.

Positive example: "After finishing her work,
she decided to take a walk in the park." This
text makes sense and flows logically, with a
clear cause-and-effect relationship.
Negative example: "The concert was great,
but I forgot my keys at home." This text
lacks coherence, as there is no clear connec-
tion between the two clauses.

Annotators should not take into account the
factual correctness or completeness of the
text.

If the annotator finds it challenging to select
a clear winner, they should select the text
that is most similar in fluency to the other
two texts.

Annotators should rely on their judgment
and knowledge while assessing fluency, but
consistency in their annotations should also
be a priority.

Answer only using "yes" or "no", with no
additional commentary or explanation.
Sentence:




# Unique sophisticated words

# Unique lexical words

# Unique sophisticated lexical words
# Total words

# Total sophisticated words

Lexical sophistication (unique) Model MSE _ Fluency
Verb sophistication Pythia-410M

Ratio of unique words No Masking 2.58 78.15
Ratio of unique verbs Fixed Rate 2.39 46.70
Ratio of unique adjectives P-MASKING  2.04 78.75
Ratio of unique adverbs GPT-2

# Dependent clauses No Masking ~ 2.69  64.25
# Clauses FixedRate 375  49.85
# T-units P-MASKING 247  61.55

# Complex T-units
# Complex nominals

Table 4: Performance of P-MASKING across different

# Stop Words base models, highlighting its superior efficacy compared
# Sentences to other masking strategies.
# Characters

Average Words Per Sentence
Average Characters Per Sentence
Average Characters Per Word
Average Syllables Per Sentence
Total Age Of Acquistion Of Words
# Named Entities Norp

# Named Entities Gpe

# Named Entities Law

# Named Entities Money

# Named Entities Ordinal

# Coordinating Conjunctions

# Nouns Method MSE Fluency
# Numerals No Masking
# Proper Nouns SOS 1.01 86.2
# Subordinating Conjunctions All 2.60 0.0
Automated Readability Index Output 1.11 80.2
Reading Time For Average Readers Logits 1.52 80.5
Table 2: Linguistic indices used in this paper. P-Masking
SOS 0.90 83.5
All 3.52 0.0
Output 1.76 80.7
Method MSE  Fluency Logits 1.31 81.9
No Masking 1.01 86.15% Table 5: Evaluation of integration methods, justifying
Dropout 1.00  86.22% that the SOS method provides the best performance in
Fixed Rate 113 86.35% terms of mean squared error and fluency.
P-MASKING 0.90 86.50%

Table 3: Comparison of masking strategies, demonstrat-
ing that P-MASKING outperforms baseline methods in
both MSE and fluency.
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