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ABSTRACT

Due to the complexity of emotional features, there has been limited
success in emotional voice conversion. One major challenge is that
conversion between more than two kinds of emotions often accom-
panies distortion of voice signal.
The factorized hierarchical variational autoencoder (FHVAE) [1]
was previously shown to have an ability, called sequence-level
regularization, to generate disentangled representations of both
sequence-level (such as speaker identity) and segment-level fea-
tures. This study exploits the FHVAE pipeline to produce disen-
tangled representations of emotion, making it possible to greatly
facilitate emotional voice conversion.
We propose three versions of algorithms for improving the quality
of disentangled representation and audio synthesis. We conducted
three mean opinion score (MOS) surveys to assess the performance
of our models in terms of 1) speaker’s voice preservation, 2) emotion
conversion, and 3) audio naturalness.

Index Terms— Emotional Voice Conversion, Variational Au-
toencoder, Disentangled Representation, Style Transfer

1. INTRODUCTION

Voice conversion (VC) refers to the process of modifying particu-
lar prosodic features of speech signals while preserving phonetic
contents and other prosodic features. VC has been typically ap-
plied to speaker change so that the utterance of the converted voice
sounds similar to that of a target speaker [2]. The VC can be appli-
cable to various problems, including speech synthesis, low bit-rate
speech coding [2], singing voice generation, video game and anima-
tion character voices generation, etc.

Emotional VC (E-VC) is another variant of the VC task. E-
VC refers to the process of converting the emotion embedded in
speech to a target emotion. The ability of E-VC to control syn-
thetic speech emotion enables a human-like interaction with com-
puter systems that use a speech interface. Virtual assistants have be-
come a dominant application of interest due to the advancement in
dialog systems, natural language processing, and speech processing.
When equipped with emotion control, one would feel more com-
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Fig. 1: Input sequence is segmented and each audio segment is used
to infer the 3 latent variable distributions using variational inference
[4]. z1, z2, z3 refer to segment-level, sequence-level, and emotion
latent variables, respectively. During conversion, z3 is modified us-
ing vector translation in the direction of the target domain with con-
trollable weight.

fortable with interacting with virtual assistant services, making them
extremely valuable both commercially and socially.

There exist a few major challenges in E-VC. The first issue is
the limited amount of training data. The collection of speech with
emotion annotation requires talents or professionals to act out the
required emotions. That being said, people may disagree on the pre-
sented emotion, posing another challenge; the subjectivity of speech
makes it difficult to evaluate the emotion control systems. [3]

Traditionally, Gaussian mixture model (GMM) based models
were applied for VC [2, 5, 6]. This requires pairs of source and
target speech aligned at the phoneme level, which is expensive to
collect, especially for the data-hungry deep learning methods. This
motivates people to use unsupervised learning methods [1, 7, 8, 9,
10, 11].

To perform emotion conversion, we employ techniques of style-
transfer based on interpretable, disentangled representations [12, 13,
14]. The factorized hierarchical variational autoencoder (FHVAE)
model learns a factorized representation of sequential data by mak-
ing use of its multi-timescale characteristics [1]. It is able to decom-
pose the long time scale features of speech, such as speaker identity
and volume, and short timescale features, such as phonetic content.
FHVAE has been evaluated for voice conversion, channel conversion
(sounds recorded with different devices) and has achieved improved
results [15, 16, 1].

The contribution of this study is threefold. First, the pro-
posed method is based on the extension of FHVAE architecture,
which introduces an additional layer of attributes using an emotion-
dependent prior. For this, we explored a variety of architectures
modifying encoded emotion attributes in different ways. The basic
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Fig. 2: Generative model of FHVAE with the addition of emotion-
dependent prior µ3.

version is shown in Fig. 1. Second, for distinct a presentation of
target emotion, we introduce an additional criterion to maximize the
margin between the emotion embeddings z3 [17]. Third, to further
facilitate emotion conversion, we use a loss function based on the
cycle-consistency loss [18].

2. RELATED WORK

StarGAN-VC [19] uses a conditional GAN with a cycle-consistency
loss to convert between many domains using a single generator.
StarGAN-VC2 [11] achieves an improvement in MOS score com-
pared to the first version, but the limitation is that the source domain
should be known.

Another work [20] uses an interpretable encoder-decoder archi-
tecture that learns to generate a disentangled representation of con-
tent and style, using a GAN discriminator loss and cycle-consistency
loss. They performed a subjective evaluation for audio naturalness,
speaker similarity, and emotion conversion ability, comparing their
model with a rule-based F0 conversion model [21] and StarGAN-VC
[19]. The limitation of this model is the need for a separate encoder
and decoder for every domain.

AutoVC [22] uses a simple loss function, utilizing the infor-
mation bottleneck theory for zero-shot voice conversion. They pre-
sented a theorem stating that with sufficient data and bottleneck di-
mension setting, their model can approximate the true distribution of
the target speaker’s speech, and perform ideal voice conversion.

VQ-VAE [10] relies on vector quantization to encode inputs into
discrete latent variables. The results indicate that the discrete en-
coding is a high-level description of speech and closely related to
phonemes. When the discrete encoding is coupled with a one-hot
speaker embedding, it is able to perform voice conversion.

3. PROPOSED METHODS

3.1. Architecture

Given a dataset of speech sequences with emotion annotation
{(XXX(i), e(i))}Mi=1, such that each sequence is composed of N (i)

segments XXX(i) = {xxx(i,n)}N
(i)

n=1 and each e(i) is one of {e(k)}Kk=1

where K is the number of emotion labels.
We extended the generative model of FHVAE (Fig. 2). The

corresponding joint distribution, with parameters θ, and approximate
posterior (inference model), with parameters φ are provided in Eq. 1

and 2, respectively. All of the distributions in Eq. 1, 2 are distributed
following a multivariate isotropic Gaussian.

In Eq. 1, the conditional distribution of x is parameterized by
a trainable neural network. The conditional distributions of z2 and
z3 are centered at µ2 and µ3, respectively, with constant variances.
The rest of the distributions in Eq. 1 are centered at 0 with constant
variances.

In Eq. 2, parameters of z1, z2 and z3 are inferred from X using
an LSTM neural network followed by a fully connected layer. For
each of µ2 and µ3, the parameters are a trainable lookup table for
means, and a constant variances.

During training, for every sequence we are given µ̃2, µ̃3. µ̃2 is
unique for every sequence, and µ̃3 is common for sequences of the
same emotion. The ELBO (Eq. 3) can be interpreted as follows: 1)
the first term is the reconstruction loss. 2) The second term causes
z1s to be normally distributed similarly to N (0, σ2

z1). 3) The third
and fourth terms of the equation cause the variables z2 and z3 to be
normally distributed similarly to N (µ̃2, σ

2
z2) and N (µ̃3, σ

2
z3), re-

spectively. 4) The fifth and sixth terms cause µ̃2, µ̃3 to be normally
distributed similarly to the priors N (0, σ2

µ2
) and N (0, σ2

µ3
). Ad-

ditionally, we use a discriminative loss of emotion, similarly to the
discriminative loss of sequences in section 2.1 of the original model
[1].

The base network architecture is identical to FHVAE with the
addition of z3 and the K-dimensional µ̃3 lookup table. During infer-
ence, z1 is conditioned on z2 and z3.

3.2. Conversion Procedure

There are two approaches known to be useful for conversion: using
the learned priors µ3 and calculating the average encoded µ3 for ev-
ery emotion using the training data or a held-out validation set. From
our experience, calculating the means from the data encoding gen-
erally results in a higher quality of conversion. In the experiments
section, we use the learned priors µ3 to demonstrate their quality. As
illustrated in Fig. 1,

ẑ3 = z3 + w ∗ (µ(target)
3 − µ(source)

3 ). (4)

3.3. Orthogonalization for disentangled embedding

One major challenge in emotion conversion is highly correlated
emotion features. For example, angry and happy emotions usually
accompany an increase in pitch and volume, albeit in different pat-
terns. Although our model generates a disentangled representation
of emotion, it can further benefit from an orthogonalization proce-
dure. We use the Gram–Schmidt orthogonalization to transform the
set {µ(i)

3 }Ki=1 into the orthogonal set {v(i)3 }Ki=1. Then, the vectors
v(i) are used for latent variable translation in Eq. 4. This turns out
to be a crucial step as it results in a great improvement of conversion
quality and generated audio naturalness.

3.4. Max-margin Training

We expect that if emotion embeddings are farther away from each
other, then we can more robustly perform emotion conversion, and
the results can be more distinctly belonging to the target class. This
view is incorporated into our criterion as shown in Eq. 5, which
is maximized by using gradient ascent. Note that we use `1-norm.
Because of the squared terms in the `2-norm, more weight is given
to the more distinct emotions. Therefore, it fails to induce a large
margin between correlated emotions, such as laziness and sadness.
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However, the use of `1-norm gives equal weight to all pairs or emo-
tions and produces a better separation between correlated emotions.

`margin =

K∑
i=1

K∑
j=i+1

‖µ(i)
3 − µ

(j)
3 ‖1 (5)

3.5. Cycle-consistency Loss

As demonstrated in section 2, cycle-consistency loss is an im- por-
tant technique for style transfer; it helps the encoder preserve some
key characteristics, such as speaker identity or phonetic content. We
use a simple cycle-loss for the `2-norm for z2 and z2, as presented
in Algorithm 1. The full loss is shown in Eq. 6:

L(θ, φ;x(n)) = L(θ, φ;x(n)|µ̃2, µ̃3) + α1 ∗ `disc(seq)
+ α2 ∗ `disc(emo) − α3 ∗ `margin
+ α4 ∗ `cycle + α5 ∗ `disc(cycle).

(6)

Algorithm 1

1: procedure CYCLE(x, hyper-parameters: {w(i)}Ki=1)
2: z1, z2, z3 ← encode(x)
3: target← random(1,K)

4: ẑ3 ← z3 + w(source) ∗ (µ(target)
3 − µ(source)

3 )
5: x̃← decode(z1, z2, ẑ3)

6: zcycle1 , zcycle2 , zcycle3 ← encode(x̃)

7: `cycle ← ‖zcycle1 − z1‖22 + ‖zcycle2 − z2‖22
8: `disc(cycle) ← log p(k|zcycle3 )

4. EXPERIMENTS

We use the same values of hyper-parameters as in the original FH-
VAE [1]. Additionally, we set σz3 = 0.5 and σµ3 = 0.1. We
observe that σµ3 significantly affects quality and quality is better for
smaller variance. We use the following weights in Eq. 6: α1 =
10, α2 = 10, α3 = 10, α4 = 1, α5 = 0.1. Hyper-parameters
are set according to cross-validation. Furthermore, we use the same
scheme of pre and post processing as FHVAE, with 80-dimensional
mel-spectrogram features.

(a) Emotion clustering in z2 (b) Speaker clustering in z2

(c) Emotion clustering in z3 (d) Speaker clustering in z3

Fig. 3: Illustration of disentanglement in z2 and z3.

4.1. Visualization

We collected a dataset consisting of 25 hours of one-sentence se-
quences, spoken by 2 speakers and consisting of 9 emotion classes.
It is recorded in a studio and the actors are asked to act out the emo-
tion. The dataset was used for speech emotion recognition training.
A model is trained without margin-loss or cycle-loss for the creation
of Fig. 3 and 4. Another model was trained with margin-loss for the
creation of Fig. 5. Data were divided into training and validation
sets (7:3). Visualizations are done using the validation set.

A disentangled representation is known to be useful for control-
ling different factors of the data independently of other factors [24].
In Fig. 3 we observe that z2 exhibits clear separation for different
speakers, whereas the emotions are not clearly separated. On the
other hand, z3 shows a gradual change from the top-left with angry
and happy (high arousal) to the bottom-right with sleepy, sad and



(a) Emotion embedding. (b) The circumplex model.

Fig. 4: The emotion embedding of our model closely resembles the
valence-arousal model of emotions [23]. In (a) arousal tends to in-
crease from top to bottom, and valence tends to increase from left to
right.

Fig. 5: Emotion embedding as a results of margin-loss.

calm (low arousal).
The arousal-valence dimensions of emotions appear to some ex-

tent in all of our simulations. Intriguingly, the emotion embeddings
of our model bear close resemblance with the valence-arousal model
[23] (Fig. 4), even though this theory is not explicitly incorporated
into our training criterion.

Finally, Fig. 5, which was generated shows the effect of using
margin loss on the emotion embedding. Note that the model is able
to distinguish between even the highly similar emotions. Fig. 3,
4(a) and 5 are generated using the t-SNE dimensionality reduction
algorithm.

4.2. Subjective evaluation

Since there is no ground truth for unsupervised style-transfer tasks,
we carried out a mean opinion score (MOS) survey to evaluate our
model. We use StarGAN-VC as a baseline [19]. The dataset used
is IEMOCAP [25], about 12 hours of acted emotional speech, with
5 speakers and 4 emotions (angry, happy, sad, neutral). We follow
the survey setting in [20], evaluating the audio naturalness, speaker
similarity before and after conversion, and the percentage of conver-
sions perceived to be of the target emotion, by asking the worker to
select one of two choices, the source and target emotion. Moreover,
our model uses the Griffin-lim vocoder to synthesize speech, while
StarGAN-VC uses the World vocoder.

The survey was performed using Amazon Mechanical Turk.
The dataset was divided into training, validation and testing sets
(70:25:5). We randomly selected 24 audio samples from the test set
for the survey. We evaluate the baseline model and 3 variations of
our model, vanilla, only with margin-loss and only with cycle-loss.
The 24 audio samples are converted into the 3 emotions other than
the source, resulting in 72 samples from every model. In the audio
naturalness test, the original samples are still only 24, while the
model outputs are 72 samples each. We gather responses from 5

(a) Audio Naturalness

(b) Speaker Similarity

(c) Emotion Conversion (%)

Fig. 6: Subjective evaluation results. * = p-value < 0.05, ** = p-
value < 0.005, *** = p-value < 0.0005

unique workers for every sample. The unique number of partici-
pants for each test: a) 113, b) 76, c) 80. The results are shown in
Fig. 6. Our model superior performance in maintaining the speaker
identity, following from the properties of FHVAE1.

5. CONCLUSION

Our emotion conversion framework is based on an extension to FH-
VAE [1] to generate a disentangled representation of emotion and
perform emotional voice conversion. We propose the addition of
novel loss terms and the orthogonalization of learned embeddings to
remedy the shortcomings of vanilla FHVAE in emotional voice con-
version. We show that our models achieve quality comparative with

1Audio samples are available at https://mohdelgaar.github.
io/humelo-emoconv-icassp2020.

https://mohdelgaar.github.io/humelo-emoconv-icassp2020
https://mohdelgaar.github.io/humelo-emoconv-icassp2020


advanced GAN-based methods while showing significant improve-
ment in maintaining the speaker’s voice.
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