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Abstract001

We present a novel approach to paraphrase gen-002
eration that enables precise control and fine-003
tuning of 40 linguistic attributes for English.004
Our model is an encoder-decoder architecture005
that takes as input a source sentence and desired006
linguistic attributes, and produces paraphrases007
of the source that satisfy the desired attributes.008
To guarantee high-quality outputs at inference009
time, our method is equipped with a quality010
control mechanism that gradually adjusts the011
embedding of linguistic attributes to find the012
nearest and most attainable configuration of de-013
sired attributes for paraphrase generation. We014
evaluate the effectiveness of our method by015
comparing it to recent controllable generation016
models. Experimental results demonstrate that017
the proposed model outperforms baselines in018
generating paraphrases that satisfy desired lin-019
guistic attributes.020

1 Introduction021

Controllable text generation (CTG) is the task of022

generating texts that satisfy desired attributes (Fi-023

cler and Goldberg, 2017; Jin et al., 2022). CTG024

has received significant attention recently follow-025

ing the improvements in text generation with large026

language models (LLMs) (Dathathri et al., 2020;027

Qin et al., 2022; Mireshghallah et al., 2022; Liu028

et al., 2023b; Zhang and Song, 2022a; Yang et al.,029

2023; Bandel et al., 2022).030

Controlled paraphrase generation (CPG) is a031

sub-task of CTG that focuses on generating para-032

phrases of a source text that satisfy predetermined033

linguistic attributes. CPG allows users to shape034

given text to align with precise linguistic objec-035

tives, and is a more challenging task than unre-036

stricted text generation (Sun et al., 2023). CPG037

has applications in text simplification (Lee and Lee,038

2023b; Lee et al., 2021; Vajjala and Lučić, 2018;039

Zhang and Lapata, 2017; Xu et al., 2015), toxic-040

ity control (Zheng et al., 2023; Zhang and Song,041
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Figure 1: We aim to transform a given sentence into
multiple paraphrases, each satisfying distinct linguistic
attributes. Our model takes a source sentence and a set
of target linguistic attributes and generates a paraphrase
optimized to satisfy the target attributes. Here we show
three paraphrases with different linguistic attributes gen-
erated for the source sentence.

2022b; Liu et al., 2021), emotion and topic con- 042

trol (Yang et al., 2023), and personalized dialog 043

generation (Huang et al., 2023b; Niu and Bansal, 044

2018). 045

CPG has the potential to generate data that chal- 046

lenges existing models from a linguistic perspec- 047

tive,1 produce text with varying levels of linguistic 048

complexity for language learners (Perkoff et al., 049

2023; Ashok Kumar et al., 2023; Wambsganss 050

et al., 2022) or data augmentation (Iyyer et al., 051

2018a; Malandrakis et al., 2019), and make text ac- 052

cessible through language simplification (Lin et al., 053

2021). The main challenge in CPG is to generate 054

text that preserves the meaning of the source and 055

satisfies the desired linguistic attributes. While ex- 056

isting work has explored this balance, most work 057

has focused on a limited set of attributes. Accom- 058

modating a wider array of linguistic attributes in 059

CPG is crucial because it improves the flexibility 060

1Especially in the current era of NLP, where datasets of-
ten contain examples that lack enough linguistic complexity,
leading to a plateau in model performance improvements.
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and engagement for diverse audiences including061

language learners.062

We introduce LINGCONV, a novel encoder-063

decoder CPG model that simultaneously controls064

multiple objectives (linguistic attributes) by adap-065

tively integrating linguistic attributes into the de-066

coding process of LLMs and implementing a robust067

quality-control mechanism for high-quality CPG.068

We will consider a set of 40 attributes, listed in Ap-069

pendix A. LingConv represents the target attributes070

in a dense representation space using an embed-071

ding layer and controls the generation process by072

integrating the attribute embeddings with decoder073

inputs through element-wise addition, so that the074

rich attribute representation will be available as a075

strong signal and attended to by the transformer’s076

self-attention. LINGCONV is trained in a super-077

vised manner using triplets of source sentences,078

target attributes, and reference paraphrases. The079

objective is to generate paraphrases that satisfy the080

target linguistic attributes and preserve the original081

meaning of the source. To ensure high-quality out-082

puts at inference time, LINGCONV implements a083

novel quality control (QC) mechanism for linguis-084

tic attributes. Since not all combinations of desired085

linguistic attributes are feasible for a given source,086

the QC component finds the closest set of attain-087

able attributes. This is achieved through a linguistic088

attribute classifier, which fine-tunes the generation089

process based on feedback from its error signals090

(obtained from back-propagation). In addition, the091

QC component has a semantic consistency clas-092

sifier to assess the semantic relevance of updated093

generations. It works based on an innovative and094

efficient line-search algorithm to determine the op-095

timized magnitude of updates and iteratively refines096

the generations until no further improvement can097

be made. This mechanism ensures that LINGCONV098

generates paraphrases that closely align with the099

desired linguistic attributes.100

To the best of our knowledge, LINGCONV is the101

first system designed to generate paraphrases with102

fine-grained linguistic attributes. The 40 linguistic103

attributes span lexical, syntactic, topical, discourse,104

and semantic aspects of language, extracted using105

tools developed by Lu (2010), Lu (2012), and Lee106

and Lee (2023a). The list of linguistic attributes107

and the rationale for choosing them are included108

in Appendix A. Figure 1 illustrates an example of109

linguistic control of a source sentence into three110

variations.111

Extensive experiments show that our approach112

outperforms baselines by a substantial margin of 113

58% in generating text that satisfies desired linguis- 114

tic attributes and preserves semantic consistency 115

and fluency. The QC approach results in a further 116

improvement of 9%. Furthermore, we show the 117

application of our approach in data augmentation. 118

The synthetic data generated by LINGCONV ac- 119

cording to linguistic attributes of high/low complex- 120

ity affect the downstream model differently. We 121

find that the linguistic attributes of augmented data, 122

and their relation to the attributes of the original 123

data, directly affect the effectiveness of data aug- 124

mentation. Then, we show how LingConv enables 125

robust, successful augmentation through CPG. 126

Finally, we conduct further experiments, pre- 127

sented in Appendix 4.2, to understand which lin- 128

guistic attributes are easy or hard to control for text 129

generation, and why. 130

2 Related Work 131

We discuss developments in controllable text gen- 132

eration. Colin and Gardent (2018) show that the 133

inclusion of a textual syntactic constraint to the 134

paraphrase generation process produces syntacti- 135

cally diverse outputs. Kajiwara (2019) proposes a 136

two-stage model for generating paraphrases. First, 137

extract the keywords that should be modified. Sec- 138

ond, generate a paraphrase with the condition of 139

excluding those words. Qian et al. (2019) real- 140

ize diverse paraphrase generation through training 141

multiple paraphrase generators simultaneously that 142

are guided by a discriminator network to enforce 143

their outputs to be discriminable, and a paraphrase 144

discriminator that ensures the output is semanti- 145

cally consistent. Chen et al. (2019) developed a 146

dataset where given a source and an exemplar, the 147

paraphrase should follow the syntax of the exem- 148

plar. FSET (Kazemnejad et al., 2020) performs 149

paraphrasing in three steps. Given a source sen- 150

tence s, it retrieves the most similar sentence p and 151

its associated paraphrase q from a bank of para- 152

phrase pairs. Then, it computes the edits required 153

to change p into q. Then, it applies those edits 154

onto s to generate a paraphrase for s. This process 155

improves the quality and diversity of the genera- 156

tions. SCSVED (Chen et al., 2020) is a variational 157

autoencoder that uses two encoder networks, mak- 158

ing use of ground-truth targets to disentangle the 159

semantic and syntactic. Diverse generations are 160

realized by modifying the syntactic latent variable 161

and keeping the semantic latent variable constant. 162
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The SUP (Yang et al., 2021) framework uses a163

conditional VAE with the syntax structure to learn164

unsupervised SPG. GCPG (Yang et al., 2022) is165

a unified framework for CPG that works by con-166

catenating the conditions to the input of an encoder-167

decoder model, supporting keyword constraints and168

syntactic conditions. Wahle et al. (2023) proposes169

splitting the task of paraphrasing into separate para-170

phrase types based on the linguistic variable being171

changed.172

An alternative approach to CTG research fo-173

cuses on energy-based models that sample from174

a latent space using ordinary differential equation175

solvers (Kumar et al., 2021; Wang et al., 2019b; Gu176

et al., 2023; Liu et al., 2023a).177

A notable mention is the Plug and Play Language178

Model (PPLM) (Dathathri et al., 2020), which does179

not require training the language model and only180

trains an attribute classifier. At inference time, it181

computes the gradient of the classifier with respect182

to the hidden state, and simultaneously updates183

the hidden state towards maximizing the attribute184

probability and also towards maximizing the lan-185

guage model probability p(x). This way, it ensures186

that the sentence remains fluent and is moved to-187

wards the target attribute. However, this approach188

is slow due to extensive computations and up-189

dates during each generation step. FUDGE (Yang190

and Klein, 2021) computes the probability of the191

next token conditioned on the desired attribute:192

p(xt|x<t, c) ∝ p(xt|x<t)p(a|x≤t).193

QCPG (Bandel et al., 2022) controls for three194

attributes in paraphrase generation: semantic sim-195

ilarity, and syntactic and lexical variation with196

respect to the source. KCN (Zeng et al., 2019)197

and BOLT (Liu et al., 2023b) control the presence198

of specific keywords in the paraphrase. Methods199

of syntactically-controlled paraphrase generation200

(SPG) include ParaAMR (Huang et al., 2023a),201

which rotates the abstract meaning representation202

(AMR) tree; reordering of the segments in a sen-203

tence parse tree (Goyal and Durrett, 2020), and204

using templates of constituency parses (Iyyer et al.,205

2018b). SynPG (Huang and Chang, 2021) disen-206

tangles the semantics and syntax embeddings by207

adding the sentence parse tree as additional features208

and performs SPG. Similarly, AMRPG (Huang209

et al., 2022) adds the AMR tree as an added fea-210

ture to allow for SPG. ParaMac (Liu et al., 2022)211

uses a language model along with word substitu-212

tion, permutation, and lexical diversity ranking for213

paraphrase generation.214

Previous works have mainly focused on the train- 215

ing phrase and a narrow set of linguistic attributes, 216

and lack quality control mechanisms at inference 217

time. LINGCONV addresses these limitations us- 218

ing 40 lexical, syntactic, semantic, and discourse 219

linguistic attributes, along with a robust quality 220

control mechanism that operates at inference time. 221

3 LingConv 222

3.1 Problem Formlation 223

Consider the dataset D = {(si, ti, lti)}Ni=1, where 224

each triplet contains a source sentence (s), a target 225

sentence (t), and the gold linguistic attributes of 226

the target sentence (lt ∈ Rk, represented by real 227

numbers). The source and target sentences in each 228

triplet are paraphrases of one another. The task 229

is to map from (s, lt) → t, such that the output 230

t is a paraphrase of s and its linguistic attributes 231

correspond precisely to the target (desired) lt.2 232

3.2 LingConv Architecture 233

Overview LINGCONV is a seq2seq model con- 234

sisting of three main components, illustrated in 235

Figure 2: encoder-decoder (paraphrase generator), 236

linguistic attribute predictor, and quality control 237

components. The encoder-decoder component in- 238

corporates linguistic attributes in the generation 239

process. The linguistic attribute predictor estimates 240

attributes of generated text, allowing for backprop- 241

agation of linguistic attribute error. At inference, 242

the quality control component iteratively adjusts 243

inputs to guide outputs towards desired attributes. 244

Given the source sentence and target attributes, the 245

model is trained with a single objective function of 246

conditional generation of paraphrases. 247

Encoder-Decoder is an extended T5 (Raffel 248

et al., 2020) model. Specifically, in order to ef- 249

fectively guide the model toward generating de- 250

sired outputs, we propose to embed the linguistic 251

attributes lt into a dense vector representation and 252

integrate it with T5’s decoder inputs.3 To achieve 253

this goal, we add the embedding of the target lin- 254

guistic vector lt to the first token of the decoder 255

2The linguistic attributes of the source sentence (ls) can be
considered as another input. However, we found that they are
redundant, and do not result in increased performance.

3We also experimented with adding linguistic embeddings
to all tokens of the decoder input, concatenating to the decoder
inputs (equivalent to prompt tuning), concatenation/addition
to encoder inputs, concatenating/adding to encoder outputs,
and fusing to encoder outputs using a linear layer. In gen-
eral, decoder injections were better than encoder injections.
Decoder first-token-addition was the best-performing overall.
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Figure 2: LINGCONV Architecture: The paraphrase generator extends the T5 model by incorporating linguistic
attributes into the decoder inputs. Linguistic attributes of the source (ls) and target (lt) are embedded and fused
with the generation using element-wise addition to the decoder inputs. In addition, the linguistic attribute predictor
estimates attributes of the generated text, which facilitates backpropagation of the linguistic attribute error. During
inference, the quality control mechanism iteratively adjusts inputs to guide outputs towards desired attributes. The
model is trained with a dual objective of semantic equivalence and linguistic attribute adherence.

inputs, which corresponds to the beginning of sen-256

tence token <bos>:257

Y ′(lt) =

{
Yi ⊗ LE(lt) if i = 0

Yi otherwise,
(1)258

where Y is the decoder input embedding, LE is the259

linguistic attribute embedding layer, ⊗ indicates260

the element-wise addition operation, and Y ′ is the261

updated decoder inputs. LE is a fully connected262

layer from Rk to Rd, where d is the dimension of263

text input embeddings.264

Objective We train our model using cross en-265

tropy loss (2):266

ℓCE(si, ti) =

len(y)−1∑
j=0

− log p(y
(j)
i |xi, y<j), (2)267

where p(y
(j)
i |xi, y<j) is the probability of the268

model predicting the j-th token in the target se-269

quence given the source sequence xi and the pre-270

vious tokens y<j in the target sequence; this loss271

translates the source sentence to a semantically272

equivalent sentence as induced by our choice of273

training data (only paraphrase examples). At test274

time, the model takes a source sentence, the linguis-275

tic attributes of the source sentence, and the desired276

linguistic attributes; and generates an output using 277

auto-regressive greedy decoding. 278

Linguistic Attribute Predictor (LP) estimates 279

the linguistic attributes of a given generation. This 280

component is independently pre-trained and frozen. 281

It allows for differentiable computation of linguis- 282

tic attributes and thus backpropagation of the error. 283

Moreover, it helps us avoid the computationally 284

intensive task of calculating 40 linguistic attributes 285

for each generated text within the training process. 286

The component is pre-trained to provide a precise 287

and efficient estimation of these attributes. We 288

implement the linguistic predictor (LP) using a 289

T5 encoder followed by a projection layer, and it 290

is trained by minimizing the mean squared error 291

of the predicted linguistic attributes of each text 292

(LP(x) = lp in Figure 2) from its gold attributes 293

(lx) as follows: 294

ℓdisc(x) = ∥LP(x)− lx∥22. (3) 295

It is not possible to backpropagate the loss through 296

a discrete prediction resulting from an argmax oper- 297

ation. Therefore, we apply Straight-through Gradi- 298

ent Estimation (Bengio et al., 2013) to the linguistic 299

attribute predictor, so the gradient is propagated to 300

the prediction logits through the multiplication of 301
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the prediction logits and the regressor’s token em-302

bedding matrix, further described in Appendix B.1.303

Semantic Equivalence Classifier (SE) quanti-304

fies semantic equivalence of a pair of sentences,305

and is used in the quality control algorithm. We306

implement SE using a T5 encoder followed by a307

projection layer, which is pre-trained by minimiz-308

ing the following contrastive loss:309

ℓsem(s, t) = − log
SE(s, t)∑

t′∈N (s)

SE(s, t′)
, (4)310

where N (s) is the set of negative paraphrases of311

s. The loss maximizes the probability of valid312

paraphrases (s, t) and minimizes the probability of313

invalid paraphrases (s, t′). For a mini-batch of size314

m, m−1 samples are used as negative paraphrases315

for the remaining sample.316

Quality Control To ensure high-quality outputs,317

we propose a quality control mechanism to use at318

inference time. The idea is to iteratively adjust319

the input sentence embeddings to gradually steer320

the model’s output toward the target attributes, lt.321

For this purpose, we apply an iterative refinement322

process (Padmakumar et al., 2023), which updates323

the model’s input with small, progressive changes324

to allow a smoother transition to significantly dif-325

ferent target attributes by taking repeated steps of326

small conversions. Algorithm 1 shows the process.327

Initially, we freeze the parameters of the generation328

model and set input sentence embeddings as our329

parameter of interest. The model then generates330

an initial output t̂ (line 4 in Algorithm 1). We use331

the linguistic attribute predictor component to pre-332

dict the linguistic attributes of this generation. We333

compute the mean squared error, l0, between the334

predicted attributes and the target attributes (line335

5), and determine the gradient g of the loss relative336

to the source sentence embeddings (line 6). We337

find an effective step size to update the parame-338

ters in the negative direction of this gradient. For339

this purpose, we employ a modified line search al-340

gorithm (Armijo, 1966; Boyd and Vandenberghe,341

2004) (lines 11–31). Specifically, we modify the342

line search algorithm to return the smallest viable343

step size and iteratively make edits to the input to344

get closer to the target attributes. The resulting gen-345

eration should adhere to two conditions: (a): the346

predicted linguistic attribute error should be less347

than l0, and (b): the “semantic equivalence” proba-348

bility should be greater than a threshold τ . These349

conditions ensure linguistic accuracy (guaranteeing 350

that the new generation has smaller linguistic errors 351

than the original one) and semantic fidelity in the 352

generation. The algorithm stops when no viable 353

step size is found within the search space of the 354

line search, indicating the generation has reached 355

its optimal state. 356

3.3 Training Data Preparation 357

To ensure that the training algorithm converges 358

more quickly, we discretize each linguistic attribute 359

into several bins, using 20 bins in our experiments. 360

In addition, we utilize the bidirectional equivalence 361

inherent in paraphrase pairs to enrich our train- 362

ing set with augmented data. First, we augment 363

the data by reversing the order of source and tar- 364

get sentences: {ti, si, lti, lsi }. Second, because a 365

sentence is inherently a paraphrase of itself, we 366

further augment the data with self-paraphrase pairs: 367

{si, si, lsi , lsi } and {ti, ti, lti, lti}. These strategies 368

increase the diversity and volume of the training 369

data, which potentially helps prevent overfitting 370

and improves the model’s ability to generalize to 371

new, unseen examples. In addition, they strengthen 372

the semantic consistency within and across para- 373

phrase pairs, which potentially improves model’s 374

understanding and generation capabilities. 375

4 Experiments 376

Data We train models using a combination 377

of the Microsoft Research paraphrase corpus 378

(MRPC) (Dolan and Brockett, 2005), semantic 379

textual similarity benchmark (STS-B) (Cer et al., 380

2017), and Quora question pairs.4 We only use 381

the positive samples in these datasets to constitute 382

semantically equivalent text pairs. Appendix C 383

provides more details. 384

Baselines We use the following baselines: 385

• Copy: the output is a copy of the input text. 386

• Reference: the output is the ground-truth tar- 387

get paraphrase from the dataset. 388

• T5-FT: a standard T5 model that lacks linguis- 389

tic attribute control capabilities, fine-tuned on 390

the dataset of paraphrase pairs. 391

• FUDGE (Yang and Klein, 2021): controlled 392

text generation with future discriminators per- 393

forms attribute control by weighting the token- 394

4https://quoradata.quora.com/
First-Quora-Dataset-Release-Question-Pairs
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Novel Target Challenge
Model BERTScore↑ MSE(ltltlt)↓ MSE(lslsls)↑ Overall↑ BERTScoreF ↑ MSE(ltltlt)↓ MSE(lslsls)↑ Overall↑

Ref 100.0 0.00 0.96 0.85 94.4 9.82 0.96 0.19
Copy 94.4 0.96 0.00 0.32 100.0 9.86 0.00 0.33
T5-FT 94.2 1.02 0.29 0.36 97.8 9.86 0.29 0.27

Llama 91.0 2.17 1.80 0.35 92.8 8.90 2.44 0.26
BOLT 90.6 1.11 1.06 0.36 90.4 7.47 1.83 0.21
Fudge 92.0 0.85 1.06 0.45 92.5 7.22 3.11 0.37
QCPG 95.3 0.58 0.78 0.55 91.4 5.61 3.25 0.41
Lingconv 95.2 0.58 0.73 0.54 92.0 3.69 4.39 0.59

+QC 95.2 0.52 0.72 0.55 91.5 2.89 6.20 0.71

Table 1: Controlled generation performance across evaluation metrics. Mean squared error (MSE) values reflect
how close the linguistic attributes of the generated paraphrase are to the target (MSE(ltltlt)↓) or source (MSE(lslsls)↑).

Model Lexical Syntactic Discourse Macro-
MSE(ltltlt)

Ref 12.62 8.89 5.91 9.14
Copy 12.66 8.87 6.19 9.24
T5-FT 12.73 8.82 6.16 9.24

Llama 10.88 8.37 5.56 8.27
BOLT 9.36 7.23 3.21 6.60
Fudge 9.54 6.83 2.34 6.23
QCPG 7.64 4.30 5.46 5.80
Lingconv 4.25 3.08 4.70 4.01

+QC 3.51 2.31 3.62 3.15

Table 2: A detailed breakdown of model performance
(MSE) across distinct groups of linguistic attributes.
Each group represents specific linguistic attributes that
contribute to the overall complexity and structure of the
generated text.

Model Lexical Syntactic Discourse Macro-
MSE(ltltlt)

Ling-disc 0.08 0.14 0.50 0.24

Table 3: Pre-training test loss of the linguistic discrimi-
nator.

prediction logits according to an attribute clas-395

sifier of the potential continuations.396

• QCPG (Bandel et al., 2022), quality con-397

trolled paraphrase generation is a state-of-the-398

art model for controlled generation. Target at-399

tributes are discretized into tokens, and added400

as a prefix to the encoder input.401

• BOLT (Liu et al., 2023b): a decoding-time402

algorithm for controlled text generation. For403

each test sample, it learns a set of biases by404

minimizing the losses of an attribute discrimi-405

nator model and an LM’s perplexity.406

• LLama3 (70B) (Dubey et al., 2024): we use407

an instruction fine-tuned LLM to evaluate the408

ability of generative models to perform the409

controlled conversion.410

Experimental Setup For each source and tar- 411

get sentence in our dataset, we extract the linguis- 412

tic attributes from existing linguistic toolkits (Lu, 413

2020, 2012; Lee and Lee, 2023a). The attributes in- 414

clude lexical, syntactic, semantic, and discourse at- 415

tributes, which capture a comprehensive spectrum 416

of linguistic structures. The backbone generation 417

model in all approaches is f lan-t5-base. Greedy 418

decoding is used to better reveal each approach’s 419

merits. Detailed hyper-parameter settings are pro- 420

vided in Appendix D. 421

Evaluation We employ several evaluation met- 422

rics to assess models in control paraphrase gener- 423

ation. BERTScore (Zhang et al., 2020) evaluates 424

the quality of generated text by measuring the sim- 425

ilarity between the generation and the reference 426

sentences, quantifying semantic fedelity. We also 427

use the average mean squared error, MSE(ltltlt), to 428

compute the discrepancy between the linguistic 429

attributes of generated paraphrases and their cor- 430

responding target attributes, which quantifies how 431

accurately the model satisfies the target attributes. 432

In addition, MSE(lslsls) measures the difference be- 433

tween the linguistic attributes of generated para- 434

phrases and those of their corresponding sources, 435

which helps determine if a paraphrase sufficiently 436

diverges from its source. An effective CPG model 437

should ideally have a high BERTScore and low 438

MSE(lt), while maintaining a high MSE(lt). 439

The Overall score of the model is computed 440

as the average of BERTScore, norm[0,1] MSE(ls)(ls)(ls), 441

and (1− norm[0,1] MSE(lt)(lt)(lt)). 442

In addition, we introduce a new evaluation set- 443

ting termed Novel Target Challenge, which tests 444

models on generating paraphrases that adhere to 445

target linguistic attributes associated with an “ir- 446

relevant” sentence to the source. It evaluates the 447

model’s adaptability to novel linguistic attributes 448
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and can act as a more robust test for CPG models.449

In our datasets, the average Euclidean distance be-450

tween the linguistic attributes of source and true451

target sentences is 1.17, while the distance to the452

linguistic attributes of irrelevant sentences is 3.91.453

The novel target challenge is therefore a harder454

task.455

4.1 Main Results456

Table 1 shows the results obtained by all models457

across evaluation metrics. Reference has access to458

gold targets and Copy, Reference, and Vanilla T5459

are baselines that lack mechanisms for controlling460

linguistic attributes.461

Our first observation is that LINGCONV gener-462

ates paraphrases that align more precisely with the463

desired linguistic attributes, as demonstrated by464

its lower MSE(lt) compared to other competing465

baselines. This result can be attributed to directly466

integrating linguistic attributes with the decoder467

input through element-wise addition and the lin-468

guistic attribute predictor which effectively guides469

the decoder to generate paraphrases that adhere to470

the target linguistic attributes. QCPG shows similar471

MSE(lt) performance but it employs a more indi-472

rect method for incorporating target attributes–by473

prefixing the input sequence with special discrete474

tokens. While effective, this approach may not475

provide the same level of precision in guiding the476

generation process. The discrete token prefixes477

could potentially introduce ambiguity or weaken478

the direct influence of linguistic attributes on the479

generated text.480

Second, we observe that LINGCONV performs481

well in balancing attribute control, and seman-482

tic similarity of output, as shown by the overall483

score. The balance between attribute control and484

paraphrase faithfulness is a crucial aspect of high-485

quality controlled paraphrase generation. Specif-486

ically, within the novel target case LINGCONV487

achieves a substantial 34% decrease in attribute er-488

ror compared to the best-performing baseline while489

maintaining the same fluency and semantic con-490

sistency as the gold reference paraphrases. Fur-491

thermore, in the novel target challenge, our quality492

control approach provides a significant reduction493

in MSE(ltltlt) of the linguistic attributes with minimal494

reduction in BertScore, providing a 14% further495

decrease in attribute error.496

Third, the novel target case shows LingConv497

scores a significant increase in MSE(ls) compared498

to the baseline models, with a difference of 2.95499

points. The low value of MSE(ls) indicates that 500

baseline CPG methods are biased by the linguistic 501

structure of the source sentence, and do not de- 502

viate far from it, while LingConv can restructure 503

the input sentence to achieve the desired control 504

attributes. 505

In addition, we find that BOLT has a limited 506

capacity on fine-grained attribute control. In the 507

novel targets case, BOLT achieves a 24% drop in 508

error compared to T5-FT, which indicates that it 509

moves in the correct direction. However, it still has 510

a high MSE compared to other CPG methods, in- 511

dicating that it struggles to control many attributes 512

at once. On the other hand, Fudge, with a high 513

enough λFudge, has a guarantee to reduce the at- 514

tribute error compared to T5-FT, because it sam- 515

ples the next token with the joint maximum LLM 516

likelihood and minimum attribute error. However, 517

Fudge has difficulty performing linguistic controls 518

because it relies on long-scale dependencies of the 519

text, where the generation needs to be based on 520

sentence-level decisions rather than token-level. 521

We observe that LLama, although able to gener- 522

ate semantically similar paraphrases, has difficulty 523

following instructions for attribute controls. In the 524

standard case, this is evident by the MSE(lt) higher 525

than T5-FT, and in the novel target case we see 526

that LLama slightly follows the attribute controls, 527

achieving a poor error comparable to that of T5-FT. 528

4.2 Analysis of Linguistic Attributes 529

We analyze the performance of models across dif- 530

ferent groups of linguistic attributes to understand 531

their strengths and weaknesses, and the inherent 532

difficulty in controlling different types of attributes. 533

We group the linguistic attributes into several types 534

according to the categorizations in (Lu, 2020, 2012; 535

Lee and Lee, 2023a). The attribute types are lexical, 536

syntactic, and discourse features. We analyze MSE 537

values for each model across standard and novel 538

target scenarios, revealing the following insights: 539

4.2.1 Controlling Discourse Proves Most 540

Challenging 541

Table 2 shows the error rate of each approach in 542

controlling different linguistic attribute groups. De- 543

spite having the lowest average error across models, 544

discourse attributes show the smallest reduction 545

in error by LINGCONV compared to T5-FT, at 546

41%. This suggests that discourse attributes are the 547

most challenging to control. In contrast, lexical at- 548

tributes have the highest average baseline error, and 549
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CoLA (Matthew’s Corr.) RTE (Acc.) SST-2 (Acc.)

Augmentation Limited Data Full Data Limited Data Full Data Limited Data Full Data

No Aug. 53.8 ± 0.4 60.6 ± 1.0 68.4% ± 1.5 74.2% ± 1.5 91.3% ± 0.1 92.4% ± 0.3
Ineffective Aug. 52.5 ± 0.8 58.4 ± 1.1 66.1% ± 2.8 71.7% ± 2.6 91.0% ± 0.3 91.7% ± 0.1
Effective Aug. 54.8 ± 0.6 60.8 ± 1.1 71.2% ± 1.3 76.0% ± 0.8 92.2% ± 0.3 93.0% ± 0.4

Table 4: Performance on GLUE tasks with No, Effective and Ineffective augmentation. Effective and ineffective
augmentations differ in the set of target linguistic attributes used to generate them.

LINGCONV achieves the most significant reduction550

in this error, at 74%. Syntactic attributes appear551

to be the easiest to control, with the error rate drop-552

ping from 8.82 to 2.31, a 73% reduction, the lowest553

among all groups. We note that Fudge achieves the554

lowest error in discourse attributes. This is because555

many of these attributes are represented by the556

presence and density of particular named entities.557

The generation of Fudge is driven by the next word558

that minimizes the MSE. Therefore, it can generate559

the singular named entities that significantly560

reduce the error. However, this is not an optimal561

strategy for syntactic structures that require several562

iterations of planning and building, as evidenced by563

the high error rate of Fudge on syntactic attributes.564

Quality Control Boosts Adherence across Lin-565

guistic Attributes The quality control algorithm566

reduces the error rates of LINGCONV across all567

types of attributes. The largest improvement of568

25% is in syntactic attributes. The algorithm of iter-569

ative refinement of a source sentence is particularly570

suited to the task of iteratively adding and deleting571

selected entities, and matching the required target572

more closely. The second largest improvement is573

in lexical attributes at 23%, the algorithm can it-574

eratively add and delete selected words, matching575

the desired lexicon and minimizing the error in576

lexical attributes. Finally, discourse features often577

require a complete restructuring of the sentence,578

which is the most difficult. However, quality con-579

trol achieves a 17% reduction in error. To further580

verify, we apply the quality control mechanism to581

T5-FT, instead of LINGCONV. T5-FT plus quality582

control has a 0.90 MSE(lt) in the standard case583

and 9.20 in novel target case. In both scenarios,584

the model improved over the vanilla T5. However,585

it is evident from this results that quality control586

alone is not sufficient for attribute control, and the587

architecture of LINGCONV is essential.588

Linguistic Predictor Performance The final589

MSE loss of the pre-trained linguistic predictor590

(LP) is 0.16 on our test set, indicating that the591

model’s results have been achieved despite using592
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Figure 3: Attribute distributions for effective vs. inef-
fective augmentation on the RTE (Limited) dataset. Ef-
fective augmentation has a greater percentage of shorter
sentences.

imperfect linguistic predictor. This could poten- 593

tially compound errors in the refined outputs gen- 594

erated during inference time with quality control 595

mechanism. We further report the error of the 596

linguistic discriminator over different types of at- 597

tributes in Table 3. We find that the error rates 598

are lowest for lexical attributes, moderately higher 599

for syntactic attributes, and highest for discourse 600

attributes. This finding is consistent with the liter- 601

ature on linguistic attributes (Pallotti et al., 2019; 602

Rafatbakhsh and Ahmadi, 2023). 603

4.3 Paraphrase Generation for Augmentation 604

We study the use of LINGCONV in generating para- 605

phrases for data augmentation, showing that con- 606

trolling linguistic attributes is crucial. 607

We focus on three tasks from the GLEU bench- 608

mark (Wang et al., 2019a): Corpus of Linguis- 609

tic Acceptability (CoLA) (Warstadt et al., 2019), 610

Stanford Sentiment Treebank(SST-2) (Socher 611

et al., 2013), and Recognizing Textual Entailment 612

(RTE) (Dagan et al., 2005) with 8.5k and 1k, 67k 613

and 1.8k, and 2.5k and 3k training and test samples 614

respectively. Data augmentation is generally more 615

effective for smaller datasets (Okimura et al., 2022; 616

Louvan and Magnini, 2020). Therefore, we use 617

Full and Limited versions of each dataset, with 618

Limited containing reduced training data (10% 619

for CoLA and SST-2, and 40% of RTE due to 620

its smaller size). We use LINGCONV to gener- 621

ate paraphrases of the training samples, which are 622

added back to the training set with labels match- 623
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ing the original samples. We create two sets of624

target attribute vectors by non-uniform sampling625

from the original data’s linguistic attribute vectors626

(T ). Biased sampling aims to produce increased627

or decreased prevalence of particular attributes in628

the generated paraphrases for augmentation, com-629

pared to the original data. This approach allows us630

to identify which attribute values result in “Effec-631

tive” vs. “Ineffective” augmentation based on task632

performance post-augmentation, compared to no633

augmentation. For example, we may sample data634

such that p(lt : lt ∈ T ) = 0.9 if lt[TTR] > 0.8 and635

p(lt : lt ∈ T ) = 0.1 otherwise, which results in636

substantial prevalence of high TTR values in the637

augmented samples.638

We run experiments with DeBERTabase (He et al.,639

2021), using the same parameters as their GLUE640

benchmark experiments. Each experiment is run641

with six random seeds, and we report the mean642

and standard error. We identify “Effective” and643

“Ineffective” sets by first evaluating 20 randomly644

sampled sets. From these, we select two sets: one645

that shows a statistically significant performance646

increase and one that shows a significant decrease647

compared to no augmentation. We then compare648

the attribute distributions of these two sets to iden-649

tify which attributes differ significantly. Results650

in Table 4 confirms that the distribution of the tar-651

get attributes influence the effectiveness of data652

augmentation, see supplementary materials for our653

data.654

Figure 3 visualizes attribute distributions that655

lead to effective and ineffective augmentation for656

the RTE (Limited) dataset. For effective augmen-657

tation, target attributes should have a significantly658

higher prevalence of shorter sentences, while in-659

effective augmentation produces more medium-660

length sentences. The Mann–Whitney U test con-661

firms significant differences with p-value < 0.05662

in the attribute distributions between effective and663

ineffective sets across all our six datasets. Details664

are provided in Appendix F.665

5 Conclusion666

We present a model for controllable text generation,667

offering control over 40 linguistic attributes and an668

effective mechanism for quality control at inference669

time, yielding a 12% improvement in output qual-670

ity. We introduce the “Novel Target Challenge”,671

where models generate paraphrases based on at-672

tributes from an “irrelevant” sentence. The setting673

effectively evaluates models’ adaptability to novel 674

linguistic attributes and can act as a more robust 675

test for controlled paraphrase generation models. 676

We evaluate the model on the downstream appli- 677

cation of generating synthetic data for data augmen- 678

tation. Our model generates viable paraphrases that 679

boost performance and produce data with targeted 680

complexity levels, addressing biases in the original 681

datasets. 682
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A List of Linguistic Attributes1107

We use expert-crafted linguistic indices as the con-1108

trol attributes for CPG. Table 5 lists all the indices1109

that we use. We select 40 out of 276 total indices in1110

the three libraries. We select indices such that there1111

are no duplicates, there is a representative index1112

from each family, there is at least one index from1113

each domain, the index is not too granular as to not1114

be useful, and the selected included indices have1115

utility in text style control.1116

For the full descriptions please refer to Lu1117

(2020), Lu (2012), and Lee and Lee (2023a). The1118

following is a brief description of a few indices as1119

an example: Automated Readability Index is the1120

grade level required for a reader to comprehend1121

the text, from preschool to professor level. Lexical 1122

words are nouns, verbs, adjectives, and adverbs. 1123

Sophisticated words are the unconventional words. 1124

We consider the 2000 least frequent words in the 1125

American National Corpus as sophisticated. Gpe 1126

Entity is a geopolitical entity. Norp entity is na- 1127

tionalities or religious or political groups. Age of 1128

acquisition is the typical age at which a person 1129

learns and begins to use a particular word. 1130

B Algorithm Background 1131

This section describes further details on the STE 1132

and line search algorithms. 1133

B.1 Straight-through Gradients 1134

STE (Bengio et al., 2013) is a technique used 1135

to propagate gradients through non-differentiable 1136

equations in the computational graph, through an 1137

estimation of the derivative. In our case, the de- 1138

coder produces token logits, which are then trans- 1139

formed into probabilities through softmax. Then, 1140

we transform the probabilities into an output se- 1141

quence using argmax. LP takes as an input the 1142

sequence of tokens and not the sequence of log- 1143

its. However, if we want to propagate the gradient 1144

of the loss generated by LP to the main model, 1145

we must pass the gradient through the output logits. 1146

Thus, we use the following trick to create a pathway 1147

in the computational graph from LP’s inputs to the 1148

logits. First, the output sequence is represented in 1149

one-hot encoding rather than a sequence of tokens. 1150

Second, we add the logits to the one-hot encoding 1151

and subtract a detached (constant) variable equal 1152

to the logits. The end result would be equal to the 1153

one-hot encoding, but the computational graph now 1154

has a path from the logits to LP through the mul- 1155

tiplication of the one-hot encoding with LP’s text 1156

embedding. This means that the gradient propa- 1157

gated to each token of the logits is scaled according 1158

to the weights of the text embedding matrix. 1159

B.2 Line Search 1160

Line search (Armijo, 1966) is a standard numerical 1161

optimization algorithm, where at every update step, 1162

the step size is chosen dynamically. There are 1163

different methods of finding the best step size. They 1164

often include trying out many different step sizes, 1165

evaluating the resulting parameters, and choosing 1166

the step size that results in the lowest loss value. 1167

Our algorithm is based on backtracking line 1168

search, which starts with a large candidate step 1169
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size, and if it doesn’t result in a lower loss than the1170

current, reduce it by a factor of γ (often = 0.5) and1171

try again. The intuition is that we would like to1172

take the largest step possible that results in an im-1173

provement to descend toward the global minimum1174

and potentially avoid local minima. However, we1175

would like the opposite; we would like to take the1176

smallest possible step that results in an improve-1177

ment to not deviate away from the original sentence1178

semantics. Therefore, our algorithm starts from a1179

small step size and grows it by a factor of γ at each1180

line search step.1181

C Datasets1182

We combine The Microsoft Research Paraphrase1183

Corpus (MRPC) (Dolan and Brockett, 2005), The1184

Semantic Textual Similarity Benchmark (STS-1185

B) (Cer et al., 2017), and The Quora Question Pairs.1186

The three datasets are created for the task of clas-1187

sifying whether the pair of texts are semantically1188

equivalent. Therefore, we only select the positive1189

samples for our model’s training and discard the1190

remaining samples. The data distribution is shown1191

in Table 6.1192

The dataset is randomly split into training, val-1193

idation, and testing sets according to the ratio1194

80:10:10. The same data is used for training all1195

versions of our approach and baselines. The seman-1196

tic equivalence and linguistic predictor models are1197

both pre-trained using the same data and splits.1198

D Experimental Settings1199

We train our model using a single A100 GPU with a1200

batch size of 40, and a learning rate of 1e−3 Adam1201

optimizer. We optimize the hyper-parameters of1202

FUDGE and QCPG. In QCPG, optimized batch1203

size = 8, learning rate = 1e− 4, and we train for a1204

large number of epochs = 20 to ensure high perfor-1205

mance. In FUDGE, we optimize the update factor1206

and the multiplicative factor λFUDGE = 0.7. We1207

use the linguistic predictor described in § 3.2 as an1208

attribute classifier for FUDGE, and weigh the logits1209

according to the inverse of the mean squared error1210

of the prediction’s linguistic attributes and the tar-1211

get linguistic attributes. Although FUDGE benefits1212

from not having to train or fine-tune the language1213

model, it is extremely slow at inference time due to1214

the demand of evaluating numerous candidates at1215

each generation step. The parameters for the Algo-1216

rithm 1 are: η0 = 103, γ = 2.25, τ = 0.95, k = 41217

All models are run with 1 seed. The random seed1218

used for all data processing and models is 0. When 1219

k > 1 random seeds are used, such as in section 4.3, 1220

seeds are from 0 to k − 1. 1221

The three augmentation settings are trained for 2 1222

epochs, and the best checkpoint is used. We use a 1223

learning rate of 1e− 3, batch size of 40, and linear 1224

learning rate scheduling. 1225

Linguistic attributes are quantized using the 1226

KBinsDiscretizer5 with the “kmeans” clustering 1227

strategy. 1228

E Attribute-specific Performance 1229

Table 7 shows the error rate of each approach with 1230

respect to individual attributes. The errors are re- 1231

ported in mean absolute error (MAE). 1232

LingConv achieves the least error in 5 out of 6 of 1233

the listed indices. LLama shows the worst perfor- 1234

mance compared to CPG methods. Compared to 1235

the T5-FT baseline, BOLT and Fudge only slightly 1236

improve the error. QCPG is the best-performing 1237

baseline after LingConv. Notably, QCPG shows the 1238

smallest error in controlling the number of nouns 1239

in a sentence. Moreover, QCPG controls the read- 1240

ability index of the generation with an MAE of 3 1241

and the ratio of unique words in a sentence with an 1242

error of 6%. For both of these indices, LingConv 1243

still achieves the smallest error. 1244

LingConv controls the number of words up to an 1245

error of 3 words, which is the best among all base- 1246

lines. LingConv also significantly improves upon 1247

the control of word sophistication in the sentence, 1248

with an MAE of 2 words. Finally, LingConv can 1249

control the reading level of a sentence from Kinder- 1250

garten (1) to Professor (14) level with an MAE of 1251

3, which is non-trivial given that non-control base- 1252

lines have an MAE of 6 levels, and LLama has an 1253

MAE of 8 levels. 1254

F Distributions of Augmentation 1255

Attributes 1256

Figures 4-8 show the distributions of the biased 1257

attributes in the strong and weak sets of target lin- 1258

guistic variables. 1259

Figure 4 shows that for the CoLA (Limited) 1260

dataset, effective augmentation is correlated with 1261

an increased percentage of sentences where the 1262

ratio of unique verbs exceeds 0.7. This suggests 1263

5https://scikit-learn.org/stable/modules/
generated/sklearn.preprocessing.KBinsDiscretizer.
html
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Figure 4: For CoLA (Limited), effective augmentation
is associated with increased percentage of sentences
with ratio of unique verbs > 0.7.

that sentences with a higher diversity of verbs con-1264

tribute to more effective augmentation, likely by1265

enhancing the semantic richness of the generated1266

data.1267

Figure 5 presents results for the CoLA (Full)1268

dataset with two distinct attribute biases. On the1269

left, we see that increasing the percentage of sen-1270

tences with fewer proper nouns is associated with1271

effective augmentation. This indicates that simpler1272

sentences with fewer proper nouns may improve1273

performance. On the right, the data shows that in-1274

creasing the number of sentences containing more1275

than one coordinate phrase also leads to effective1276

augmentation. This suggests that complex sentence1277

structures with multiple coordinate phrases con-1278

tribute positively to augmentation effectiveness.1279

Figure 6 details biases applied to the RTE (Full)1280

dataset. The left subplot indicates that effective1281

augmentation is linked to a higher percentage of1282

sentences with more than three clauses. This sug-1283

gests that sentences with more complex structures1284

are beneficial for augmentation. Conversely, the1285

right subplot shows that decreasing the percent-1286

age of sentences with a Type-Token Ratio (TTR)1287

greater than 0.8 is associated with effective aug-1288

mentation. This implies that sentences with a lower1289

TTR, reflecting less lexical variety, can also en-1290

hance augmentation effectiveness.1291

Figure 7 demonstrates the impact of reducing1292

the ratio of sophisticated words in the SST-2 (Lim-1293

ited) dataset. Effective augmentation is associated1294

with a decrease in sophisticated words, suggest-1295

ing that simpler vocabulary contributes to better1296

augmentation outcomes in this dataset.1297

Figure 8 provides a detailed view of biased at-1298

tributes for the SST-2 (Full) dataset. The top-left1299

subplot shows that increasing the number of unique1300

lexical words leads to effective augmentation. The1301

top-right subplot reveals that increasing the aver-1302
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(a) Increase the percentage of sentences with a smaller number
of proper nouns.
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(b) Increase the number of sentences with more than 1 corodi-
nate phrase.

Figure 5: For CoLA (Full), we bias two attributes.

age sentence length is also beneficial. Additionally, 1303

the bottom subplot indicates that a higher number 1304

of sentences with more than nine lexical words 1305

contributes to effective augmentation. These re- 1306

sults suggest that a richer vocabulary and longer 1307

sentences improve augmentation effectiveness. 1308

These figures collectively illustrate how manip- 1309

ulating various linguistic attributes influences the 1310

effectiveness of data augmentation, highlighting 1311

specific features that can be optimized to enhance 1312

performance across different datasets. 1313
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clauses.
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(b) Decrease the percentage of sentences with TTR > 0.8.

Figure 6: For RTE (Full), we bias two attributes.
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Figure 7: For SST-2 (Limited), decrease the ratio of
sophisticated words.

Algorithm 1 Quality Control
This algorithm optimizes the alignment of generated text with
target linguistic attributes while preserving semantic equiva-
lence to the source. The quality control loop adjusts the text
embeddings iteratively using a gradient-based method com-
bined with a line search to minimize attribute errors. The
process continues until a satisfactory generation is found or
the algorithm exhausts its search.

Require: model M , linguistic predictor LP , semantic clas-
sifier SE, input s, target attributes lt, base step size η0,
step size scaling factor γ, semantic equivalence threshold
τ , patience k

1: procedure QUALITY_CONTROL(s, lt)
2: Θ← Emb(s) ▷ Initialize embeddings from the

source text
3: while True do
4: t̂←M(Θ, lt) ▷ Generate text with current

embeddings
5: lcurrent ← ∥LP (t̂)− lt∥22 ▷ Compute attribute

error
6: g ← ∇Θl0 ▷ Compute gradient w.r.t. embeddings
7: Θ← ADAPTIVE_STEP_SEARCH(Θ, l0)
8: if Θ = null then
9: break ▷ Terminate if no improvement is

found
10: return t̂
11: procedure ADAPTIVE_STEP_SEARCH(Θ, l0)
12: η ← η0 ▷ Initialize step size
13: patience← k ▷ Initialize patience counter
14: while patience > 0 do
15: σsem ← SE(s, t̂′) ▷ Check semantic equivalence
16: if l′ < l0 and σsem ≥ τ then
17: return Θ′ ▷ Accept and return the new

embeddings
18: else
19: η ← η ∗ γ ▷ Reduce step size
20: patience← patience− 1 ▷ Decrease patience
21: while patience > 0 do
22: Θ′ ← Θ− η ∗ g ▷ Update embeddings
23: t̂′ ←M(Θ′, lt) ▷ Generate text
24: l′ ← ∥LP (t̂′)− lt∥22 ▷ Compute new attribute

error
25: σsem ← SE(s, t̂′) ▷ Check semantic equivalence
26: if l′ < l0 and σsem ≥ τ then
27: return Θ′ ▷ Accept and return the new

embeddings
28: else
29: η ← η ∗ γ ▷ Reduce step size
30: patience← patience− 1 ▷ Decrease patience
31: return null ▷ Return null if no improvement
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# Unique sophisticated words
# Unique lexical words
# Unique sophisticated lexical words
# Total words
# Total sophisticated words
Lexical sophistication (unique)
Verb sophistication
Ratio of unique words
Ratio of unique verbs
Ratio of unique adjectives
Ratio of unique adverbs
# Dependent clauses
# Clauses
# T-units
# Complex T-units
# Complex nominals
# Stop Words
# Sentences
# Characters
Average Words Per Sentence
Average Characters Per Sentence
Average Characters Per Word
Average Syllables Per Sentence
Total Age Of Acquistion Of Words
# Named Entities Norp
# Named Entities Gpe
# Named Entities Law
# Named Entities Money
# Named Entities Ordinal
# Coordinating Conjunctions
# Nouns
# Numerals
# Proper Nouns
# Subordinating Conjunctions
Automated Readability Index
Reading Time For Average Readers

Table 5: Linguistic indices used in this paper.

Dataset Full Dataset Positive Samples
QQP 363,846 134,378
MRPC 3,668 2,474
STS-B 5,749 2,994
Total 373,263 139,846

Table 6: QQP, MRPC, and STS-B contain samples that
are either semantically equivalent or not equivalent. We
select from the three datasets samples with the equiva-
lent label for training and evaluating our model.
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(a) Increase number of unique lexical words.
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(b) Increased average sentence length.
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(c) Increase sentences with # Lexical Words > 9

Figure 8: For SST-2 (Full), we bias the number of lexical
words, total words, and unique lexical words.
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# words # sophisticated words # lexical words ratio of unique words # nouns readability index
ref 12.97 4.29 7.60 9.13% 2.16 6.62
copy 12.98 4.29 7.61 9.25% 2.14 6.65
t5-ft 12.83 4.22 7.49 9.18% 2.10 6.69

llama 12.04 4.55 7.25 8.29% 2.36 8.01
bolt 10.85 3.36 6.11 8.51% 1.83 5.47
fudge 11.10 3.36 6.29 7.95% 2.00 5.09
qcpg 5.34 2.83 3.62 5.93% 1.16 3.04
lingconv 4.37 2.38 3.04 5.92% 1.27 3.36
lingconv+qc 3.21 1.97 2.36 6.38% 1.23 3.01

Table 7: a detailed breakdown of model performance across a selected set of linguistic attributes. performance is
reported in mean absolute error (mae). the results are based on novel targets of linguistic attributes.
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